Role of Clips in Therapeutic Endoscopy: A Review

Diego Sánchez-Muñoz, Carlos Ortiz-Moyano, Blas Gómez-Rodríguez

In all these situations, the development of endoscopic clips was a step forward in the therapy of gastrointestinal bleeding. Afterwards, the potential mechanical effect of clips derived in a wider range of indications, so endoscopic treatment of polyps, prevention of postpolypectomy bleeding, fistula closure, small perforations borders approximation, among others, benefit from the presence of clips in endoscopy rooms. The simplicity of use and the relative low rate of adverse events make clips a good alternative or an added device to be used in combination with other established methods. Nevertheless, this is a continuously changing world, and new clips are being designed and developed to be more effective.

This review will focus on the actual indications for endoscopic clipping, as well as setting clips place in the present and future of therapeutic endoscopy.

TYPES OF ENDOSCOPIC CLIPPING DEVICES

All the devices available have similarities in their design, consisting on a metallic cable within a different length and width Teflon sheath. In the distal end of the metallic cable the clip is enclosed with a mechanism that allows several opening and closing movements, similar to other forceps used in gastrointestinal endoscopy (i.e biopsy forceps), in order to position the clip properly in front of the lesion to be treated. The same way, a rotatable mechanism is incorporated at the handle of the device, which makes achievement of a correct opening direction of the clip possible. The detachment of the clip is also controlled by the handle. All but one of the devices deploy a single clip, making the use of several devices eventually necessary in order to solve the clinical situation for which clips are being used.

The first device was developed by Olympus (Olympus Corporation, Tokyo, Japan), being actually available a reusable model (Ez Clip™) and a single-use device (Quickclip™). The Ez Clip™ is a commonly used device in Asian countries. It is provided with several arm lengths from an ultrashort device (4 mm) to a standard one of 9 mm length. The Quickclip™ and the latter Quickclip2™ are manufactured in several lengths (short, standard, long), with a range of opening from 90° to 135°, and a jaw length from 7 to 9 mm for the Quickclip™, and a opening width from 9 to 11 mm for the Quickclip2™. Quickclip2™ is also available in a length enough to be
The first papers regarding the use of endoscopic hemoclips showed cases in which hemostasis had to be achieved. In 1988, Hachisu et al described a hemostatic rate of 84% in 51 patients with several bleeding lesions. Some studies have evaluated the efficacy of clips in the achievement of bleeding cessation of acute bleeding peptic ulcers in the gastrointestinal tract, comparing it with several thermal or injection hemostatic methods. Two studies compared clips placement versus heater probe thermocoagulation, with disparity of results. Several studies assessed comparison between clips and injection of several substances to achieve hemostasis in peptic ulcer diseases, such as epinephrine, ethanol, polidocanol, or distilled water. Initial hemostasis showed a higher efficacy of clips when compared with distilled water, but they did not demonstrate to be superior than polidocanol or ethanol. Nevertheless, the rate of initial success of clips in these studies was higher than 90%. When compared with epinephrine, clips, alone or in combination with epinephrine, did not show statistical significance in achieving initial hemostasis, but an hemostatic gain was shown to be attributed to clips. This agrees with the recommendations of international guidelines regarding the use of combination endoscopic methods to treat acute non-variceal gastrointestinal bleeding.

In 2007, Kirschkniaik et al published the first data about a new and promising clipping device, the Over-the-scope clip (OTSC™) in 11 patients suffering from gastrointestinal bleeding, achieving hemostasis without complications and without rebleeding in all the cases. The same group increased the number of patients treated posteriorly, but in this case, two out of 27 patients rebled. Recently, OTSC™ demonstrated its efficacy as an option in treating patients who failed to conventional hemostatic therapies, including “classic” clips, achieving a 97% rate of success. It is soon to establish the real place of OTSC™ in the treatment of gastrointestinal bleeding lesions, but the results shown are promising.

Lower gastrointestinal bleeding

Clips have been used for the treatment of bleeding promoted by Dieulafoy lesions. Chung et al studied several methods for treating Dieulafoy lesions. Although it was a small series of patients, they concluded that mechanical methods were superior in efficacy than injection methods. Although it is not yet well established which is the best method for treating Dieulafoy lesions, clips have been compared with endoscopic band ligation, showing no differences in efficacy between both methods.

Diverticular bleeding is another source of lower gastrointestinal bleeding which therapy can be challenging. Kaltenbach et al recently demonstrated how clips placement in acute diverticular bleeding can resolve the clinical problem in 75% patients, with a low rate of long term rebleeding. These results agreed with a previous study showing both a high immediate and long term result when acute diverticular bleeding was treated with clips placement (with or without epinephrine injection). Nevertheless, when compared with other mechanical hemostatic methods, clips therapy were not superior than endoscopic band ligation at achieving initial hemostasis, but the rebleeding rate was higher in the clips group. Clips can be placed in the margin of the diverticulum, closing the diverticulum itself or over a visible vessel. Clips placement confers also the theoretical advantage of being a radiopaque marker for further therapy if needed. Small studies have also showed benefit for clips placement in other colonic bleeding diseases, such as rectal ulcer. The small incidence of these entities does not allow to have carried out comparative studies between several hemostatic methods.

Postpolypectomy bleeding

Bleeding events are one of the potential severe complications after endoscopic polypectomy, occurring both immediately after polypectomy or delayed, corresponding to 1.5-2% of all polypectomies. In case of acute bleeding after endoscopic polypectomy, therapy with clips have shown high rates of efficacy, but studies comparing clipping with other thermal or mechanical methods in stopping postpolypectomy bleeding have not been found. In order to approach to a simple, effective, and without appreciable side effects, method to prevent postpolypectomy bleeding, clips have been studied. A retrospective Spanish study showed that clips placement prevented from delayed bleeding in 34 patients with big, pedunculated polyps (Figure 1 and 2). Recently, clips have shown to be able to prevent up to 97% bleeding events when placed prophylactically prior to a standard snare polypectomy. When compared with other techniques, clips appeared to have similar efficacy rates in preventing delayed postpolypectomy bleeding than endoloop-assisted polypectomy, growing as an alternative when endoloop is difficult or impossible to place. A greek study compared hemorrhagic events after endoscopic polypectomy assisted with epinephrine alone or with combination method with clip and endoloop, observing how up to a 12.5% of the patients treated with adrenaline alone bled versus only a 3.2% in the clip-endoloop group.

Sánchez-Muñoz D et al. Role of Clips in Therapeutic Endoscopy
One argument against generalized use of prophylactic clips to prevent postpolypectomy bleeding may be, not only the lack of comparative data available, but other factors such as cost, time-consumption, technical difficulties at clip placement or availability of clips worldwide. The same way, the relative low incidence of postpolypectomy bleeding has made endoscopists to question the real place of clips in the prevention of this complication. To clarify this fact, factors affecting postpolypectomy bleeding have been assessed, arguing that both polyp size and anticoagulant/antiplatelet therapy were risk factors for severe postpolypectomy bleeding\(^\text{[27]}\).

This way, patients with big polyps or patients under anticoagulation/antiplatelet therapy might achieve the highest benefit in preventing postpolypectomy bleeding\(^\text{[28,29]}\). Our group carried out a study comparing clips placement versus adrenaline injection in big polyps, with result favoring the clip group. In our study, a subgroup of patients under anticoagulant/antiplatelet therapy was included, working out that it is necessary to treat 10 anticoagulated patients with clips to prevent a major bleeding episode, while the number needed to be treated in the non-anticoagulated group was 17, achieving statistical significance\(^\text{[30]}\).

Closure of perforations

In the last years of the 20\(^{th}\) century, clips were first used to close colonic iatrogenic perforations by Japanese endoscopists\(^\text{[31]}\). Several case reports led to clinical trials in animal models, showing efficacy of clips in closing colonic ruptures\(^\text{[32,33]}\). Human studies did not delay, and in 2008, Magdeburg et al were able to manage conservatively with clips 25 out of 27 patients with iatrogenic colonic perforation, with result favoring the clip group. In our study, a subgroup of patients under anticoagulant/antiplatelet therapy was included, working out that it is necessary to treat 10 anticoagulated patients with clips to prevent a major bleeding episode, while the number needed to be treated in the non-anticoagulated group was 17, achieving statistical significance\(^\text{[34]}\).

CONCLUSIONS

Clips have become an essential device in endoscopy rooms, having demonstrated to be powerful, efficient, and versatile for the treatment of several clinical situations, such as bleeding, perforations, fistulas and for the prevention of postpolypectomy bleeding. Nevertheless, comparative studies, as well as cost-effectiveness data, are awaited in order to establish the best device to be used in each situation. Technological development of new clips, such as the OTSC™, makes the future inspiring in order to offer the best available therapy to our patients.

CONFLICT OF INTERESTS

There are no conflicts of interest with regard to the present study.

REFERENCES

2. Lin HJ, Hsieh YH, Tseng GY et al. A prospective, randomized trial of endoscopic hemoclip versus heater probe ther-
Sánchez-Muñoz D et al. Role of Clips in Therapeutic Endoscopy

crcoagulation for peptic ulcer bleeding. *Am J Gastroenterol* 2002; 97: 2250-2254

5 Chung IK, Ham JS, Kim HS et al. Comparison of the hemostatic efficacy of the endoscopic hemoclip method with hypertonic saline-epinephrine injection and a combination of the two for the management of bleeding peptic ulcers. *Gastrointest Endosc* 1999; 49: 13-18

7 Ljubnic N, Supanc V, Vrsalovic M. Efficacy of endoscopic clipping for actively bleeding peptic ulcer: comparison with polidocanol injection therapy. *Hepatogastroenterology* 2004; 51: 408-412

37 Kratt T, Küper M, Traub F et al. Feasibility study for secure closure of natural orifice transluminal endoscopic surgery gastrotomies by using over-the-scope clips. *Gastrointest Endosc*
Sánchez-Muñoz D et al. Role of Clips in Therapeutic Endoscopy

dasc 2008; 68: 993-996

Peer reviewers: Hiroto Kita, Professor and Chair, Department of Gastroenterology, Director of Endoscopy, Saitama Medical University International Medical Center, 1397-1, Yamane, Hidaka, Saitama, 350-1298, Japan; Hoon Jai Chun, MD, PhD, Professor, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Institute of Digestive Disease and Nutrition, Korea University College of Medicine, 126-1, 5-Ga, Anam-Dong, Seongbuk-Gu, Seoul, 136-705, Korea; Kim JH, MD, PhD, Professor, Department of Gastroenterology, Ajou University School of Medicine, San 5, Woncheon-dong, Yeongtong-gu, Suwon 442-380, Korea.