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ABSTRACT
Metagenomics is a new emerged technology used to investigate the 
microbial diversity in an environment and to study their function in 
a given environment. The Human Microbiome Project is a global 
project to research diversity of microbial communities associated 
with human body and to investigate their effects on physiology of 
organs. These studies also are interested to link between the existence 
of a microbial population and several inflammatory, physiological, 
metabolic and psychological disorders. Based on metagenomic 
studies, this paper aims to review the newest information regarding 
microbial diversity of the intestinal tracts and their physiologic and/or 
pathologic influences on human body.
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INTRODUCTION
Employment of new emerged detecting technologies, referred to 
as metagenomics, has changed our view of microbial diversity 
in different habitats, including the micro-flora of gastrointestinal 

tracts. Metagenomics is an approach in which whole genome 
contents of a community of (micro) organisms in a niche of interest 
is investigated in order to detect its microbial diversity and also 
to study special trait(s) of the habitat[1,2]. This technique employs 
the hyper-variable sections of special marker genes, especially 
the 16S ribosomal RNA (rRNA), to identify microbial diversity. 
Also, this technique is able to detect the functional ability of 
existing microorganisms in an environment based on the identified 
genes[3]. The metagenomic approach can be used for any natural 
environment where microbial genomic sources are available. 
The Human Microbiome Project is an international study of the 
microbial communities associated with different parts of our body[4]. 
Most of the existing information regarding the microbial diversity 
of human body and their role in different physiological functions 
of the gastrointestinal tract are based on in vitro or culture based 
studies. However, the new approaches have opened new windows 
for understanding these relationships between human cells and 
microbial strains.
    The gastrointestinal tract consists of different parts, including 
mouth, esophagus, stomach, small intestine, colon and rectum. 
These tracts function as digestive and absorptive organ for our 
body and at the same time are known as a major exocrine and 
endocrine hormone producer and an important immune organs[5,6]. 
Based on the conventional culture-based approaches, a few 
hundred microorganisms has been detected at different parts of 
gastrointestinal tracts and the population of obligate anaerobic 
bacteria, specially Bacteroidetes, are one thousands time more 
than the population of facultative organisms. However, based 
on culture-independent approaches 1,012 cells lives in 1g  stool, 
consisting of over 13,000 microbial species that most of them 
belonged to the Firmicutes and Bacteroidetes (respectively, 75% 
and 16%)[7,8]. This number in some papers is suggested more than 
1,800 genera and 15,000 to 36,000 species, varying based on the 
bacterial classification system[9]. Only 20% of these microorganisms 
are detectable by conventional culture-based methods[7]. Although 
the diversity may differ in each individual person or society, the 
ecological niche of the microbial combination is similar[10]. In this 
paper, diversity and function of normal flora of the gastrointestinal 
tracts is reviewed based on the newest information obtained from 
culture independent technologies.
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THE NORMAL FLORA OF INTESTINAL TRACT 
AT BIRTH
While intestinal tract is sterile at the birth, it may be contaminated 
through birth[11]. Although based on researches in 1990s, mode of 
delivery (normal vaginal birth or caesarean section) had no significant 
effect(s) on the normal flora of the neonatal intestinal tracts[12,13], 
nowadays researchers believe in an entirely different way. In normal 
vaginal delivery, the neonate is affected by both mother’s vaginal and 
intestinal flora, and the neonate’s gut is colonized predominantly by E. 
coli, Enterococci, Bifidobacterium, Lactobacillus and Prevotella[14-16]. 
However, since the neonates delivered via caesarean mode are not 
exposed to the mother’s vaginal/intestinal flora, their intestinal 
microbial composition is similar to the microbial flora of skin, 
consisting of a lower microbial diversity in which Staphylococcus is 
a dominant population[14,15].
    In a culture based research, it has been shown that the mode of 
feeding has fundamental effects on the normal flora of the intestine 
at the first days of birth[17]. Approximately 24 hours after a normal 
birth, the intestinal tract acquire some microorganisms originated 
from mother’s vagina or her intestinal tracts through delivery or 
taking milk[18]. Regardless of mode of feeding, the intestine is 
occupied mostly by E. coli, also some other enterobacteriaceae 
and gram-positive cocci by the end of first week[12]. Microarray 
based investigations showed that the microbial population of 
intestine is formed after one week, but the flora will not reach to its 
equilibrium by the end of infancy[18]. These flora constitutes mainly 
of Bifidobacterium sp., E. coli, Enterococcus sp., Streptococcus sp., 
Staphylococcus sp., Actinomyces sp., Clostridium sp. and Bacteroides 
sp[19, 20]. It has been shown that roughly 6 day after birth the intestinal 
tracts of breastfed and bottle-fed infants were dominantly colonized by 
Bifidobacteria and enterobacteriaceae, respectively. These conditions 
continued by the end of one month when Bifidobacteria were the 
dominant bacteria in both groups. In this age, however, the number of 
Bifidobacteria in the stool of bottle-fed infants was 1/10 in comparison 
to breast-fed infants[17]. In a study performed based on 16S rRNA 
amplification, Bifidobacterium sp. was dominant member of the fecal 
samples taken from infants below four month old, and the number of 
this bacteria raised from 45% in eight days old infants to 64% in 117 
days old infants[21]. It is important to be mentioned that since nutrition 
shortage affects directly mother’s normal flora and her immune 
system[22], it is suggested that malnutrition before and after delivery 
might change indirectly the neonate’s microbiota. Furthermore, this 
condition affects milk components in terms of nutrients and different 
immunoactive compounds such as antimicrobial enzymes, Interleukin 
10 (IL10) and several growth factors[22].

THE ORAL CAVITY
The oral cavity provides different special habits where vast variety of 
microorganisms are colonized[23]. Based on information in the Human 
Oral Microbiome Database (http://www.homd.org/) approximately 
688 species of prokaryotes, including only one species of archaea 
(Methanobrevibacter oralis), have been characterized that only 49% 
of them are known microorganisms. These bacteria belong to different 
phyla, including Firmicutes (33.9%), Proteobacteria (16.57%), 
Bacteroidetes (17.73%), Actinobacteria (13.23%), Spirochaetes 
(7.12%), Fusobacteria (5.38%), TM7 (1.75%), Tenericutes (1.6)%, 
Synergistetes (1.45%), SR1 (0.44%), GN02 (0.44%), Chloroflexi 
(0.15%) and  Chlamydiae (0.15%) (Table 1)[24]. The composition and 
abundance of microorganisms in different part of oral cavity is varied. 
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For instance, hard palate, keratinized gingiva and buccal mucosa are 
occupied with Firmicutes (mostly Streptococcus sp. and Gemella 
sp.) followed by Proteobacteria, Bacteroidetes, Actinobacteria 
and Fusobacteria in a diminishing order[25]. Also, throat, tonsils, 
tongue and saliva are inhabited mostly by Firmicutes, especially 
Streptococcus sp., Veillonella sp. and Lachnospiraceae (Oribacterium 
sp. and Catonella sp.) followed by Bacteroidetes (Prevotella sp.), 
Neisseria sp., Fusobacteria (Fusobacterium sp. and Leptotrichia 
sp.), Actinobacteria (Actinomyces sp.) and TM7 in a diminishing 
order. However, the abundance of Firmicutes in the plaques formed 
on both supra-and sub-gingival habitats is decreased but the number 
of Actinobacteria shows a significant increase[25]. In addition to the 
strains found in the throat and tongue, these last habitat are occupied 
by Rothia sp., Corynebacterium sp., Porphyromonas sp. and 
Capnocytophaga sp[25]. The pathogenic microorganisms involved in 
oral and systemic infections like Treponema sp., Aggregatibacter sp., 
Megasphaera sp., S. pyogenes, S. pneumoniae, H. influenzae and N. 
meningitidis are also found in those area in low abundance[25]. 

ESOPHAGUS
The esophagus is a unique part of gastrointestinal tracts since 
foods are not deposing in the tract. Based on the culture dependent 
methods using the samples given from luminal washes of the tract, 
most researches showed a sterile environment where sometimes 
is contaminated by the transit microorganisms originating from 
upstairs or downstairs organs[26] like Herpesvirus, Cryptococcus sp. 
and Candida sp[28-31]. However, based on 16SrRNA pyrosequencing, 
esophagus is occupied by a stable flora consisting of same series of 
microorganisms as the oral cavity and nasal swab and roughly 140 
species from six phylum of the microorganisms Firmicutes (mostly 
Streptococcus sp. and Veillonellance), Bacteroides (mostly Prevotella 
sp.), Actinobacteria, Proteobacteria, Fusobacteria, and TM7[27-29].  
The habitat is dominantly occupied by Streptococci (78% of the 
microbial population)[27]. The composition of esophageal flora change 
in different physiologic and pathologic conditions, such as gastro-
esophageal reflux disease (GERD) and Barrett’s esophagus. In these 
pathologic and inflammatory conditions, the tract is more hospitable 
for anaerobic and microaerophilic bacteria. For instance, it has 
been shown that the staphylococci population is declined to 29% in 
Barrett’s esophagus[27]. Also, 16sRNA assay showed that the normal 
flora of this area is changed from 10 to 5 species in the Barrett’s 
esophagus and 17 species in the reflux esophagitis patients[30]. 

THE STOMACH
The acid secretion into the stomach makes the tract as special 
micro-ecosystems, including the gastric mucosa-associated and 
the gastric juice-associated habitats, where many bacteria cannot 
survive. Although many microorganisms have been found in the 
habitats, many of them are transient and came by swallowed foods. 
Based on 16SrRNA sequencing, however, several acid resistant 
microorganisms like Helicobacter sp., Prevotella sp., Lactobacillus 
sp., Streptococcus sp., Enterococcus sp. Staphylococcus sp. 
Stomatococcus sp., Pseudomonas sp., Rothia sp. and Neisseria sp., 
originated from both upper and lower intestinal tracts, are normally 
isolated from these areas[31]. The number of microorganisms inhabited 
in the stomach is increasing by using new metagenomic approaches, 
and up to now it is claimed that 13 classes of microorganisms, from 
262 phylotypes, live in the stomach. Despite a relatively stable flora 
inhabited in the gastric mucosa-associated, micro-flora of gastric 
juice-associated environment is affected by the swallowed foods[32].
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Table 1 List of the normal flora of human oral cavity based on molecular approaches (the data have been taken from http://www.homd.org/).

Domain
Archaea

Bacteria

Phylum
Euryarchaeota

Actinobacteria

Bacteroidetes

Chlamydiae
Chloroflexi

Firmicutes

Fusobacteria

GN02

Proteobacteria

Spirochaetes
SR1
Synergistetes

Tenericutes

TM7

Class
Methanobacteria

Actinobacteria

Bacteroides

Bacteroidetes[C-1]
Bacteroidetes[C-2]

Flavobacteria

Chlamydiae
Chloroflexi[C-1]

Bacilli

Clostridia

Erysipelotrichi
Negativicutes

Fusobacteria
GN02[C-1]
GN02[C-2]

Alphaproteobacteria

Betaproteobacteria

Deltaproteobacteria

Epsilonproteobacteria

Gammaproteobacteria

Spirochaetes
SR1[C-1]
Synergistetes[C-1]

Mollicutes

 TM7[C-1]

Family
Methanobacteriaceae

Actinomycetaceae, Dietziaceae, 
Bifidobacteriaceae, Corynebacteriaceae, 
Dermacoccaceae, Micrococcaceae, 
Mycobacteriaceae, Propionibacteriaceae, 
Sanguibacteraceae, Bifidobacteriaceae, 
Coriobacteriaceae, Microbacteriaceae

Bacteroidaceae, Bacteroidales [F-2], 
Bacteroidales [F-3], Porphyromonadaceae, 
Prevotellaceae, 
Bacteroidetes[F-1], 
Bacteroidetes[F-2]
Flavobacteriaceae, Flavobacteriales[F-1], 
Flavobacteriales[F-2]
Chlamydiaceae
Chloroflexi[F-1]

Bacillaceae, Listeriaceae, Paenibacillaceae, 
Staphylococcaceae, Aerococcaceae, 
Carnobacteriaceae, Enterococcaceae, 
Lactobacillaceae, Streptococcaceae

Clostridiales[F-1], Clostridiales[F-2], 
Clostridiales[F-3], Eubacteriaceae[15], 
Lachnospiraceae [14], Peptococcaceae, 
Peptostreptococcaceae [11], 
Peptostreptococcaceae [13], 
Syntrophomonadaceae [8], Veillonellaceae
Erysipelotrichaceae
Acidaminococcaceae
Veillonellaceae
Fusobacteriaceae, Leptotrichiaceae
GN02[F-1]
GN02[F-1]
Caulobacteraceae, Bartonellaceae, 
Bradyrhizobiaceae, Brucellaceae, 
Phyllobacteriaceae, Rhodobacteraceae, 
Rhizobiaceae, Sphingomonadaceae

Alcaligenaceae, Burkholderiaceae, 
Comamonadaceae, Ralstoniaceae, 
Neisseriaceae, Rhodocyclaceae

Bdellovibrionacae, Desulfomicrobiaceae, 
Desulfovibrionaceae
Campylobacteraceae, Helicobacteraceae

Cardiobacteriaceae, Enterobacteriaceae, 
Pasteurellaceae, Moraxellaceae, 
Xanthomonadaceae

Spirochaetaceae
SR1[F-1]
Synergistetes[F-1], Synergistetes[F-2]
Mollicutes[F-1], Mollicutes[F-2], 
Mycoplasmataceae
TM7[F-1], TM7[F-2]

Most famous genera or species
Methanobrevibacter oralis
Actinomyces, Dietzia, Bifidobacterium, 
Scardovia sp., Parascardovia sp., 
Corynebacterium diphtheria, Rothia, 
Mycobacterium leprae, M. neoaurum, 
M. tuberculosis, Propionibacterium, 
Bifidobacterium, Gardnerella, Atopobium sp., 
Microbacterium sp., Olsenella sp.,  Slackia sp.,

Bacteroides, Porphyromonas, Prevotella

Capnocytophaga sp.

Chlamydophila pneumoniae
Chloroflexi[G-1]
Bacillus anthracis, B. subtilis, Listeria 
monocytogenes, Paenibacillus sp., Gemella, 
Streptococcus epidermidis, S. aureus, 
Enterococcus durans, E. faecalis, lactobacillus 
acidophilus, L. salivarius, L. vaginalis, L. casei, 
L. lactis, Oribacterium sp., S. Pneumoniae, S. 
pyogenes, S. salivarius, S. sanguinis

Clostridium sp., Eubacterium, Mogibacterium, 
Peptococcus, Johnsonella sp., Shuttleworthia 
sp., Peptostreptococcus, Peptoniphilus, 
Parvimonas, Filifactor, Veillonella, 
Anaerococcus sp

Erysipelothrix, Solobacterium
Acidaminococcus sp.
Megasphaera sp., Selenomonas
Fusobacterium, Leptotrichia

Caulobacter, Bartonella, Bradyrhizobium, 
Agrobacterium, Rhizobium, Rhodobacter, 
Sphingomonas

Achromobacter, Bordetella pertussis, 
Burkholderia cepacia, Comamonas, 
Leptothrix, Kingella, Neisseria meningitidis, 
Eikenella, Rhodocyclus  sp.
Bdellovibrio, Desulfobulbus, 
Desulfomicrobium, Desulfobivrio
Bacteroides, Campylobacter, H. pylori 
Enterobacter, E. coli, P. mirabilis, Klebsiella 
sp.,  Yersinia pestis, Haemophilus aegyptius, 
H. ducreyi, H. haemolyticus, H. influenzae, 
H. parainfluenzae, Aggregatibacter 
actinomycetemcomitans, Acinetobacter, M. 
catarrhalis, Pseudomonas aeruginosa, P. 
fluorescence, Xanthomonas
Treponema vincentii, T. denticola

Synergistetes bacterium SGP1

M. pneumonia, M. salivarius, M. fermentans

    It is believed that the non-H. pylori microorganisms in the gastric 
environments function as antigenic stimulators and increase the 
abnormality caused by H. pylori[33]. Furthermore, based on animal 
studies, it has been suggested that intragastric flora assist H. pylori to 
cause gastric cancer as a result of increase in repairing rate of mucosal 
injury, and therefore, due to increase in cellular replication[34,35]. Also, 
activity of some microorganisms in the area, such as Eubacterium 
limosum, enhance colonization of H. pylori in the area[36,37].  
However, the relationship between H. pylori and other gastric 
microorganisms is not always friendly. For instance, several studies 
have shown that probiotic microorganisms, such as Bifidobacterium 

sp., Lactobacillus sp. and Saccharomyces sp. are able to decline the 
inflammation caused by H. pylori through prevention of microbial 
colonization, eradication of H. pylori, decrease the side effects caused 
by administration of antibiotics and finally by reduction of relapse 
rates[38-40]. On the other hand, stabilization of H. pylori in the gastric 
environments amends distribution and number of lactobacilli[41].

INTESTINAL TRACTS
The small intestine consists histologically of three different parts, 
namely duodenum, jejunum and ileum. Due to inhibitory effects 
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caused by acidic pH (of gastric juices), bile salts (released from 
gallbladder), IgA (immunoglobulin A), the antimicrobial compounds 
(released from small intestine like C-type lectins, cathelicidins and 
defensins), little amounts of microbes (less than 103) have been 
isolated from duodenum[42-44]. In addition, several physiological 
conditions, such as peristalsis movement of the tract, desquamation 
of epithelial cells and mucosal flow speed up the transient period 
of foods through the trace (between 30 minute to 3.5 hours) and 
thus wash the microbial cells up from this tracts[45]. The number of 
microorganisms raises through the small intestine and reach to 108 
microorganisms per milliliter intestinal juice due to decrease in the 
level of the inhibitory factors[46]. For instance, alkaline secretions 
from pancreas lead to decrease of pH profile in a healthy person from 
5.5-7.0 in the duodenum to 6.5-7.5 in the ileum[47]. Furthermore, 
metagenomic studies showed that the bile salt hydrolysis (BSH) 
activities enhance bacterial resistance to the Conjugated bile acids 
(CBAs), facilitating their colonization in the gut[48].
    Based on the NIH human microbiome project (HMP), the 
microbiota in oral cavity is more diverse than small and large 
intestines. In the other word, no members of Chlamydiae, 
Chloroflexi, GN02, Spirochaetes, SR1, Tenericutes and TM7 as 

well as the members of Alpha proteobacteria have been found in the 
healthy human gut (Table 2) (http://www.hmpdacc.org/catalog/). 
In upper parts of the small intestine, most habitats are occupied by 
acid tolerant streptococci and lactobacilli[49]. Due to the physical, 
chemical and physiological changes through the small intestine, the 
dominant members of microbial community in jejunum shifts to class 
bacilli, mostly Streptococci, and Proteobacteria[46]. Normal flora of 
the ileum is similar to colon and contains more than 1,013 microbes, 
consisting of 500 different species[50]. While the Enterobacteriaceae 
are dominant microorganisms within the lumen of small intestine, 
the majority of microorganisms identified in this intestinal mucosa 
of this area consist of the Clostridiales clusters XIV, XI and IV and 
Bacteroidetes[51-53].
    Due to low concentration of the inhibitory factors, lack of 
Peyer’s patches and lower peristalsis of the large intestinal tract (and 
longer retention time of food in the tract), the large intestine (colon) 
contains higher microbial population than small intestine[54]. The 
colon is populated with a big community (1×1013-1×1014 cells per 
gram stool) of microorganisms (approximately 10-30 percentage of 
stool weight), consisting of more than 500 species and around 2×106 
genes (100 times more than the human genome)[55,56]. Normal flora 

Table 2  List of the normal flora of the human gut based on molecular approaches (the data have been taken from http://www.hmpdacc.org/catalog/).

Domain
Archaea

Bacteria

Phylum
Euryarchaeota

Actinobacteria

Bacteroidetes

Firmicutes

Fusobacteria

Proteobacteria

Synergistetes

Class
Methanobacteria

Actinobacteria

Bacteroidia

Bacilli

Clostridia

Erysipelotrichi

Negativicutes

Fusobacteriia

Betaproteobacteria

Deltaproteobacteria

Epsilonproteobacteria

Gammaproteobacteria

Synergistia

Family
Methanobacteriaceae
Bifidobacteriaceae, 
Coriobacteriaceae
Corynebacteriaceae
Propionibacteriaceae
Prevotellaceae
Bacteroidaceae
Porphyromonadaceae
Rikenellaceae
Bacillaceae
Streptococcaceae
Enterococcaceae
Lactobacillaceae
Leuconostocaceae
Listeriaceae
Paenibacillaceae
Lachnospiraceae

Clostridiaceae
Unclassified Clostridia
Ruminococcaceae
Eubacteriaceae
Peptococcaceae

Peptostreptococcaceae
Clostridiales Family XI 
Incertae Sedis, 
Erysipelotrichaceae
Veillonellaceae
Acidaminococcaceae
Fusobacteriaceae
Sutterellaceae
Oxalobacteraceae
Neisseriaceae
Burkholderiaceae
Sutterellaceae
Desulfovibrionaceae
Helicobacteraceae
Campylobacteraceae
Moraxellaceae

Enterobacteriaceae

Succinivibrionaceae
Desulfovibrionaceae
Pseudomonadaceae
Synergistaceae

Genus
M. smithii
Bifidobacterium sp.
Collinsella sp., Eggerthella sp.,
Corynebacterium ammoniagenes
Propionibacterium sp, Gordonibacter sp., Slackia sp.
Prevotella sp., Paraprevotella sp.
Bacteroides sp., Parabacteroides sp.
Porphyromonas sp., Dysgonomonas sp., Tannerella sp., Barnesiella sp.
Alistipes sp.
Bacillus sp.
Streptococcus sp.
Enterococcus sp., E. saccharolyticus
Lactobacillus  sp., Pediococcus acidilactici
Leuconostoc mesenteroides, Weissella sp.
Listeria grayi
Paenibacillus sp.
Coprococcus sp., Blautia sp., Roseburia sp., Dorea sp., Butyrivibrio sp,, 
Anaerostipes sp., Marvinbryantia sp.
Clostridium sp., 
Flavonifractor sp., 
Eubacterium sp., Cylindroides sp., Anaerofustis sp.
Peptococcus, Desulfitobacterium
Ruminococcus sp., Faecalibacterium sp., Anaerotruncus sp. , 
Subdoligranulum sp.

Anaerococcus sp., Parvimonas sp., Finegoldia sp.

Turicibacter sp., Coprobacillus sp., Catenibacterium sp., Holdemania sp.
Veillonella sp., Megamonas sp., Mitsuokella sp., Dialister sp.
Acidaminococcus sp., Phascolarctobacterium sp.
Fusobacterium sp.
Sutterella parvirubra
Oxalobacter sp.
Neisseria macacae
Ralstonia sp.
Parasutterella excrementihominis
Desulfovibrio piger, Bilophila wadsworthia
H. pylor, H. cinaedi, H. pullorum, H. winghamensis
Campylobacter sp., Arcobacter butzleri 
Acinetobacter radioresistens
E.coli, Providencia sp., Citrobacter sp., Hafnia,  Klebsiella sp.,  
Edwardsiella, Proteus sp., Enterobacter sp.,  Shigella sp, Cedecea sp., 
Raoultella
Succinatimonas sp.
Desulfobivrio sp., Bilophila sp.  
Pseudomonas sp.
Synergistes sp. , Anaerobaculum hydrogeniformans
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of stool consists frequently of Bacteroidetes (especially Bacteroides  
sp.), Firmicutes, Proteobacteria, Actinobacteria and Fusobacteria in 
decreasing order[25]. However, 30-40 species of microbial population 
in stools constitute 99% of the population. Although the habitat 
is occupied mainly by Firmicutes (clusters IX, XIV, and XVI) 
and Bacteroidetes (35%) (especially, Bacteroides, Prevotella and 
Faecalibacterium), other bacterial phyla, including Proteobacteria 
(13-15%) and Fusobacteria (7-8%), Actinobacteria, Verrucomicrobia 
as well as few archaea have been also found in this tract[7,57,58]. 
    Furthermore, the habitat is occupied by approximately 50 fungal 
phylogroups (like Saccharomyces sp., Galactomyces sp., Penicillium 
sp., Candida sp., Gloeotinia sp. and Paecilomyces sp.)[59,60]. Based 
on 18S rRNA studies, Blastocystis sp subtypes II, III and IV are 
dominant fungi in the distal intestinal tract[60]. While few numbers of 
protozoans have been adapted themselves to live in host associated 
niches, these microorganisms can be found in a vast variety of 
vertebrate hosts. By now, several types of parasite or commensal 
protozoa like Endolimax sp., Entamoeba histolytica, Entamoeba 
coli, Entamoeba invadens, Iodamoeba sp., Trichomonas hominis, 
Chilomastix sp., Pentatrichomonas sp. and Giardia intestinalis 
have been isolated in human gut[61,62]. Although these protozoa are 
distributed worldwide, their prevalence in a geographic area is mostly 
dependent to poor sanitation of inhabitants[63]. Also, while existence 
of Cyanobacteria in human gut has been proven by molecular studies, 
no cyanobacterial strain  has been isolated yet[64]. Methanobrevibacter 
smithii and Methanosphaera stadtmanae are the only confirmed 
archaea isolated from human gut. However, some other archaea 
like Methanobrevibacter oralis (the only isolated archaea from 
saliva), Methanosarcina, Stadtmanae and Methanosphaera have 
been occasionally isolated from these area[65]. Also, presence of low 
abundant of some pathogenic microorganisms, such as H. pylori in 
the lower intestinal tracts has been proven[25]. Despite the homology 
between bacterial population of the intestine, intestinal virome is 
unique to each person and 95% of this viral diversity is retained in 
individuals over times[61].
    Based on the experiments conducted with new emerged techniques, 
the intestinal microbiome participate in several activities, including 
normal cell differentiation and development of the intestinal tracts, 
tissue homeostasis, natural defence system against pathogenic 
microorganisms of the tract, host energy metabolism and as an 
effective facilitating factor for metabolism of different swallowed 
foods, complex hydrocarbons and fibres[6,66,67]. These flora assist 
the body to keep its health as a result of production of short chain 
alcohols and acids, production of vitamin K and B family, alteration 
in bile salt composition, degradation of food and preparation of a 
better condition for adsorption of nutrients by intestinal cells[11,66]. 
Although each society may show a special microbial diversity 
profile in their intestinal tracts, there is a core gut microbiome in 
all investigated societies which totally harbour a similar collection 
of genes. Indeed, as far as a diversity of microorganisms is able to 
provide the special niche required in a healthy intestinal tracts, it 
can efficiently work for the body. However, the slight alterations in 
the phylotype composition of a person, due to excitement, hunger, 
nutrition, antibiotic treatment and infection, leads to an unique 
ecological condition that may intensify susceptibility of a person to 
infectious or physiological disorders[10,20,57]. 
    By now, severa l phys io logica l fea tures l ike energy 
metabolism[11,68,69], degradation of xenobiotics and drugs[70,71], cell 
differentiation and development[6,72], maturation and activity of 
immune system[73,74] and the host response to damages in the intestinal 
epithelial cells have been attributed to the gut microbiome[75,76]. For 

instance, the intestinal tracts of germ-free mice showed abnormal 
long intestinal villi[6,72], abnormal enlarged cecum and altered 
gastrointestinal motion[6]. In this hypothesis, the SCFAs (short chain 
fatty acids) produced by commensal bacteria play as an immune 
system modular through two different mechanism: activation of 
cellular GPRs (G-coupled-protein-receptor) and inactivation of 
histone deacetylase (HDAC), thus leading to the immunological 
responses seen in autoimmune disorders such as atopy and 
asthma[77,78]. Based on studies on germ free rats, the commensal 
bacteria are essential for development of gastrointestinal-associated 
lymphoid tissue (GALT) and IECs (intestinal epithelial cells) in the 
small intestine[73,74]. The IECs use TLRs (Toll Like Receptors), PRPs 
(Pattern Recognition Receptors) and NLRs (Nod Like Receptors) 
to differentiate pathogens from commensal microorganism[76]. 
Since the constitution of microbial society in the intestinal tracts of 
preterm neonates who are kept in incubator is delayed in compare 
to the healthy neonates, the intestinal tract of these infants show 
slow peristalsis and the neonates are severely susceptible to different 
intestinal infectious disorders[79]. Also, it has been shown that the 
intestine of germ free mice do not produce angiogenin 4, delaying 
the formation of villus capillaries in their small intestine[68,80]. 
Furthermore, it has been shown that the intestinal flora are able to 
induce production of the transcription factor NF-κB[81]. The NF-
κB released into the intestinal tracts induces expression of a variety 
of genes involved in cell proliferation, cell differentiation and 
pro-inflammatory responses through infection. Overexpression 
or deficiency of these factors may lead to occurrence of several 
pathogenic conditions like obesity and chronic IBD (inflammatory 
bowel disease)[82-84]. 
    Since hosts live with this flora for millions of years and different 
types of ecological relationship have been established between host 
and the microorganisms, it is suggested that any factor that affects 
these relationships might lead to pathologic conditions. Overall, 
the balance in population of microbial flora is critical for our health 
and according to hygiene hypothesis, it is believed that imbalanced 
microbial population in our body due to improvement in public 
health is a potential etiological factor for several intestinal pathogenic 
situations like inflammatory bowel diseases (IBDs), circulatory 
disease, obesity and autism to the microbiota, atopy and asthma[85-92]. 
Studies on several intestinal associated diseases or even many 
systemic disorders have indicated intensive changes in microbial 
diversity and their composition. For instance, studies on CD (Coeliac 
disease) showed that the microbial diversity, especially in the 
proportion of members of Firmicutes decreased significantly while 
there were highly increases in the number of bacterial population, 
particularly in Gram negative bacteria. At the same time, the ratio of 
Bacteroides-E. coli (shigella) to Lactobacillus-Bifidobacterium was 
higher in these patients[90-92]. It has been shown that overgrowth of 
E. coli in the gut lead to LPS-TLR4 (Toll like receptor 4) signalling 
in the gut and therefore to trigger an inflammatory response[93]. 
Antibiotic associated disorders are well-known clinical problems 
in which oral administration of some broad-spectrum antibiotic, 
such as clindamycin, ampicillin, neomycin, erythromycin, 
metronidazole and cephalosporins alter temporarily the aerobic flora 
of intestinal tract mostly to Clostridiales order like Subdoligranulum, 
Acetivibrio, Butyricicoccus, Dorea, Collinsella, leading to severe 
intestinal diseases such as antibiotic-associated diarrhea and 
pseudomembranous colitis[94].
     Although it has not been clearly proven, intestinal microorganisms 
can function as a potent etiology of colorectal cancer (CRC) due 
to release of free radicals and genotoxins and also as a result of 



890© 2013 ACT. All rights reserved.

Amornyotin S et al.  Metagenomic Study of Gastrointestinal Tracts

induction of Th dependent cell proliferation and TLR dependent 
procarcinogenic mechanisms[95]. Based on 16S rDNA DGGE 
analysis, a significant increase in diversity of microorganisms, 
especially in Clostridium coccoides and Clostridium leptum, was 
recorded in the patients with polyposis and CRC (colorectal cancer). 
Increase in the number of sulphate reducing bacteria and production 
of H2S (a cytotoxic factor) and at the same time, decrease in the 
number of sulphide oxidizing bacteria, such as desulfovibrio, 
has been suggested as a probable etiological factor of CRD and 
polyposis[96,97]. In a separate research, increases in the levels of some 
probiotic bacteria, like Faecalibacterium, Fusobacterium, Roseburia 
andCoriobacteridae and a decrease in the level of enterobacteriaceae 
were observed within the gut of CRC afflicted patients[98]. 
    Nowadays, researches regarding the effect(s) of gut microbial 
composition on psychology (mental health and mood) of an 
individual are progressively reported. The intestinal flora can 
influence development of brain cells and personal behaviors[99]. 
It has been proven that any alteration in the probiotic bacterial 
composition can directly affect the neurochemical secretions outside 
the gut. An intensified response in the hypothalamic-pituitary-adrenal 
axis to stresses, and at the same time, meaningful reductions in the 
production of brain-derived neurotrophic factors by the hippocampus 
and the cortex are proven through investigation on experimental 
animals[100,101]. Furthermore, a study on GF mice showed that the 
gut microbial flora affect the post-natal development of brain, 
control of brain motor and occurrence of an anxiety-like behavior by 
modulation of synaptophysin and PSD-95 (two critical glycoproteins 
involved in maturation of neuronal synapses)[102,103]. The gut 
microbial community might also affect the neuronal development 
and person’s behaviour by modulation neuronal transmitters such 
as acetylcholine, GABA (gamma-aminobutyric acid), melatonin, 
serotonin and histamines) within the intestinal tracts[102,103]. Based on 
the gut-brain communication hypothesis, it appears that gut microbial 
composition is closely associated with the psychiatric disorders such 
as depression[6]. Autism is the best known neural disorder associated 
with alteration of gut microbiota where the number of (spore 
forming) clostridia, specially Clostridium bolteae is meaningfully 
increase[104,105]. Based on this theory, it is easy to describe the reason 
of family involvement to the autism and the cause of its relapse 
after the treatment is cut[105]. Furthermore, it has been indicated that 
roughly 30% of the patients suffering of Major depressive disorder 
(MDD) are afflicted by irritable bowel syndrome (IBS)[106]. As it 
has been mentioned, IBS itself is caused partly by increase in the 
number of aerobic bacteria. It appears that the number of aerobic 
bacteria in the intestinal tract is critical and increase in the number 
of these bacteria can be associated with different physiological and 
psychological disorders. In addition to the case of MDD, it has been 
shown that the severity of neurological signs in fibromyalgia(FM) 
and Chronic Fatigue Syndrome (CFS) is directly associated with 
the abundance of these group of bacteria in the gut[107-110]. However, 
it is important to be clarified whether the psychological disorders 
are caused as a result of alteration in the composition of bacteria 
or inversely, the changes are a side effect of the diseases due to 
change in dietary regimen, physical inactivity or any changes in the 
level of secretion of digestive factors such as acids, bile salts and 
enzymes. It has been proven that the cytokines involved in depressive 
symptoms, like TNFα (tumour necrosis factor alpha)[111,112] and Il-1β 
(interleukin1-beta)[113] decrease the secretion of HCl in the stomach. 
On the other hand, it is necessary to be mentioned that the signs of 
fatigue were reduced in the patients suffering from CFS who took a 
tablet containing Lactobacillus casei strain Shirota (LcS)[100].  

    It also has been shown that composition and distribution of 
microbial flora in gastrointestinal tracts is directly associated with 
absorption of nutrients and establishment of malnutrition[11,68,69]. 
For instance, extra-proliferation of some bacteria, such as 
Bacteroides, Clostridia and Enterococci are attributed to several 
disorders such as megaloblastic anemia (due to absorption of 
vitamin B12)[114], steatorrhea (due to imbalance absorption of fatty 
acids and monoglycerides)[115], reduction of the gastric acidity and 
deficiency in digestive enzymes[116], obesity[117-119], bowel cancer[120] 
and allergic disease[121]. studies on malnourished children showed 
significant increases in the population of Campylobacteraceae, 
Helicobacteraceae, Bacteroidaceae and Porphyromonadaceae[122].  
      In contrast, the gut of  healthy children was mostly enriched by 
Actinomycetales, Burkholderiales, Halobacteriales, Plantomycetales, 
Bifidobacteriales, Pseudomonadales, Enterobacteriales, 
Chlorof lexales , Desulfovibr ionales , Xanthomonadales , 
Lactobacillales, Rhizobiales, Planctomycetales and Clostridiales, 
in a diminishing order[122]. These changes are accomplished with 
several relapsing gastrointestinal infections, weight loss and growth 
impairment in the malnourished children[123-127]. Also, it has been 
indicated that majority of the microbial genes involved in obesity 
were derived from Firmicutes (25%) and Actinobacteria (75%), while 
the majority of genes involved in leans was mainly derived from 
Bacteroidetes (42%)[10]. Such these changes have been demonstrated 
in the microbiome of obese and lean twins[128] and researchers were 
able to transfer the obesity phenotype from obese mouse to lean 
animals[117].
    A direct correlation between the resident microbial diversity 
of HBF (human baby flora) and host metabolic profiles has also 
indicated in several studies. For instance, it has been indicated that 
colonization of microorganism in the intestine leads to increase in the 
level of phenyl-containing amino acids. Colonization of Clostridium 
sporogenes in the gut is also associated with increase in the level 
of indole-3-propionic acid in host serum[102,129]. Furthermore, based 
on investigations on HBF inoculated mice, higher levels of myo-
inositol and ethanolamine in the duodenum, higher concentration 
of betaine and taurine in the ileum, higher glutathione level in the 
jejunum and lower concentrations of myo-inositol and taurine 
in the colon were measured in compare to other regions of their 
gut[130]. The metabolic ability of microorganisms can affect the 
bioavailability of several medicines like simvastatin (used for 
decreasing the serum levels of cholesterol), salicylazosulfapyridine 
(administrated for ulcerative colitis), l-Dopa (for treatment of 
Parkinson) and digoxin (administrated for treatment of congestive 
heart failure)[131]. Simvastatin, for instance, down-regulate 
production of hepatic cholesterol through inhibition of the activity 
of HMG-COA (3-hydroxy-3-methylglutaryl coenzyme A). A 
Hydroxylation/dehydroxylation, methylation and beta-oxidative 
activity applied by intestinal microorganisms convert simvastatin 
into 2-hydroxyisovaleric acid and some other simple organic acids, 
leading to decrease the drug bioavailability[132]. 

CONCLUSION
Before application of metagenomic approaches for environmental 
samples, our knowledge was limited to some effects of microbial 
communities on that environment. However, metagenomic 
approaches and bioinformatic technologies enable researchers 
to find the exact microbial diversity and gene composition of 
an environment and to investigate effects of the genes on the 
environment. The outcomes of these researches, based on modulation 
of gut microbiome, are potentially applicable for therapeutic 
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approaches, like antibiotic therapy, bacteriophage therapy and 
probiotic methods used not only for intestinal disorder also for some 
physiological abnormalities caused directly or indirectly by the gut 
microbiota[133-135]. Probiotic therapies, for instance, are nowadays 
proposed for several gut-related illnesses within gut or outside of the 
tracts.
    For the first time, when Metchnikoff (1970) could link between 
the longevity of Bulgarian peasants with normal flora of their colon, 
he called these organisms as probiotics. It has been proved that the 
intestinal microbiota consisting of saccharolytic microorganisms, 
including lactobacillus sp., Bifidobacteria sp., E. coli, Enterococci, 
Bacillus sp., Bacteroides, Faecalibacterium, Propionibacterium and 
saccharomyces boulardii, increase our resistance against opportunistic 
infections due to alteration in the balance between microbial 
communities of intestinal tracts[136-138]. These microorganisms 
apply their probiotic activity based on metabolic excretion, 
immunomodulation and epigenetic modifications[139,140]. Some of the 
effects exerted by probiotic microorganisms include: (a) occupation 
of different parts of intestine and thus, prevention of colonization 
and stabilization of pathogenic microorganisms[141]; (b) production 
of antimicrobial compounds (such as bacteriocins, antibiotics, 
H2O2)[142,143]; (c) detoxification of many poisons and carcinogens[144]; 
(d) Regulation of immune responses to pathogens via up-regulation 
of anti-inflammatory modules and suppression of proinflammatory 
modules[145]; (e) stimulation of local immune system (cellular immune 
system or or sIgA)[146]; (f) production of degrading enzymes[147]; (g) 
attenuating the activity of many microbial enzymes involved in their 
metabolism (like nitroreductase, azoreductase, beta-glucosidase, beta-
glucuronidase, ornithine decarboxylase and tryptophanase[148-150]; (h) 
attenuating the activity of many microbial enzyme involved in their 
virulence (eg, neuraminidase and mucinase)[151,152]; (i) reducing the 
level of polyamines, indol, ammonia, nitrate and nitrite in intestinal 
tracts[153-155]; (j) improvement the function of liver via stimulating 
secretion of bile salts[119]; (k) adjustment the blood pressure[156,157], (l) 
increase in metabolism of cholesterol[158,159]; (m) positive impacts on 
proliferation and differentiation of epithelial cells in the intestine[160]; 
and (n) improvement of intestinal barrier function[138].
    It has been shown that Lactobacillus sp. and Bifidobacterium 
sp. play as anticancer factors in the gut. The anticancer activities 
are applied by stimulation of the immune system[161], inactivation 
of mutagenic agents (such as nitrosamine) inhibition of the activity 
of microbial enzymes present in feces (such as nitroreductase) and 
reduction in tumor cell proliferation (such as the inhibitory role of 
the cell wall of lactobacilli on cellular proliferation)[162,163]. Also, 
it has been indicated that probiotics improve digestive activity of 
intestine in several ways like production of the degrading enzymes 
for proteins, carbohydrates and fiber[147], improving the permeability 
of intestinal cells[164,165], reduction of the intolerance to foods, such 
as lactose[166], reducing of intestinal inflammation[167,168], treatment of 
intestinal disorders such as diarrhea and constipation[169,170], treatment 
of malnutrition via increase in absorption of minerals and production 
of different vitamins (such as family B, biotin, A, E, K and folic 
acid)[171,172].
    Overall, presence and activity of probiotics in intestine is closely 
associated with human health and longevity. Consumption of certain 
foods such as yogurt and alcohol affect positively and negatively 
(respectively) on the intestinal flora bacteria. Consumption of special 
strains of Lactobacillus (or fermented milk) adjusts blood pressure via 
production of a tripeptide that inhibits the activity of Angiotensin; this 
enzyme functions in hypertension[156,157]. Also, it has been shown that 
consumption of yogurt for a week can reduce the level of cholesterol 

in blood via absorption of cholesterol as well as production and 
accumulation of hydroxyl-methyl-glutarate-coenzyme A (HMG-
CoA) (an inhibitor of accumulation of HMG-COA reductase)[158,159]. 
Furthermore, several non-digestible food referred to as prebiotics 
such as inulin-containing oligosaccharides and fructooligosaccharides 
pass through the small intestine without any digestion and are able 
to activate selectively the bacterial duplication of bifidobacteria and 
lactobacilli in the large intestine[173,174]. 
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