Introduction: The aim of the study was to assess the safety and feasibility of pancreaticoduodenectomy (PD) using modified Pinch-Burn-Cut (PBC) technique and Harmonic FOCUS® under continuation of antiplatelet therapy in patients with high thromboembolic risks.

Methods: Consecutive 78 patients who had undergone PD using combination of modified PBC technique and HF in a tertiary care setting from 2009 to 2016 were retrospectively reviewed. Among which 18 patients with high thromboembolic risks underwent preoperative aspirin continuation and were included in the study. Background and perioperative factors were described with detailed information, and the outcome variables of patients were compared between the pancreatic cancer patients (PC group) and those with the other diseases (non-PC group).

Results: The current cohort included 8 patients in PC group and 10 in non-PC group, respectively. The major indication of APT was history of percutaneous coronary intervention for angina pectoris (15/18, 83.3%). The median of operative time and estimated blood loss were 482 min and 511 mL, respectively. There were no differences between the groups in the operative time, blood loss, or the rates of postoperative complications. None suffered from excessive bleeding requiring platelet transfusion intraoperatively, and there is no case with massive intraoperative bleeding (≥1,000 mL). Three minor Grade B post-pancreatectomy hemorrhage (PPH, 16.7%) and 2 Grade B postoperative pancreatic fistula (POPF, 11.1%) occurred postoperatively, but no patient suffered from Grade C PPH/POPF or thromboembolic complications. Operative mortality was zero.

Conclusion: PD using modified PBC technique and Harmonic FOCUS® can be performed safely and satisfactorily even in APT-burdened patients with high thromboembolic risks. Maintenance of single APT should be considered in patients with high thromboembolic risk, even when PD is performed.

Key words: Pancreaticoduodenectomy; Modified PBC technique; Harmonic FOCUS®; Antiplatelet therapy; Bleeding complication; Thromboembolic complication

© 2017 The Author(s). Published by ACT Publishing Group Ltd. All rights reserved.
INTRODUCTION

Nowadays, a number of patients undergoing non-cardiac surgery have histories of cerebrovascular or cardiovascular diseases and receive antiplatelet therapy (APT). The perioperative antithrombotic management for these patients is often bothersome due to increased risks of both bleeding and thromboembolic complications[5-7]. In our perioperative management of patients with high thromboembolic risks such as drug-eluting coronary stent implantation, the protocol included preoperative continuation of aspirin monotherapy and postoperative early reinstitution to prevent fatal postoperative thromboembolic complications (“Kokura Protocol”)5-9, and have demonstrated the feasibility and safety of abdominal surgeries, both in laparoscopic and open approach, using the Kokura Protocol5-7.

Pancreatectoduodenectomy (PD) is a highly invasive procedure and may expose the APT-received patients to high perioperative risks of either bleeding or thromboembolic complications. It is reported that surgical blood loss and intraoperative blood transfusion is the known risk factors for postoperative complications after PD9-10. To minimize the surgical blood loss during PD, we use modified “Pinch-Burn-Cut” (PBC) technique (the technique for recipient’s operation in living-donor liver transplantation)10-13 in combination with ultrasonically activated shears with a curved thin tip [Harmonic FOCUS® (HF), Ethicon Endo-Surgery, Cincinnati, OH]12,13 especially in antithrombeprepared patients with high thromboembolic risks. The aim of the study was to assess the safety and feasibility of PD using combination of modified PBC technique and HF under continuation of antiplatelet therapy in patients with high thromboembolic risks.

MATERIALS AND METHODS

Patients

Between May 2009 and April 2016, a total of 78 patients underwent PD at our institution. APT was regularly used in 26 patients, among which 18 consecutive patients undergoing PD under perioperative continuation of aspirin monotherapy due to high thromboembolic risks were included in the current study. Surgical procedures included subtotal stomach-preserving PD in 17 and conventional PD in 1 patient. All procedures were performed by or under the guidance of one of the attending surgeons at our institution.

Background, perioperative, and outcome variables were obtained through the standardized electronic surgery database and the hospital charts. The status of patients’ symptoms and functions with respect to ambulatory status and need for care was described according to the ECOG Scale of Performance Status (PS)14. Postoperative complications were categorized and assessed using Clavien-Dindo classification (CDC)15 and CDC class II or higher was considered relevant. Postoperative pancreatic fistula (POPF) was defined according to the definition of the International Study Group of Postoperative Pancreatic Fistula (ISGPF)16. Post-pancreatectomy hemorrhage (PPH) was defined according to the definition of the International Study Group of Pancreatic Surgery (ISGPS)17; both POPF and PPH were classified into 3 different grades. Postoperative thromboembolic complication was defined as previously described5-6, including myocardial infarction, cerebral infarction, mesenteric infarction, and pulmonary thromboembolism. Operative mortality included death within 30 days after surgery.

Background and perioperative data were described with detailed information, and the outcome variables of patients were compared between the pancreatic cancer patients (PC group) and those with the other diseases (non-PC group). Continuous variables in the characteristics were expressed as a median with range. The categorized data in each group were compared by chi-square or Fisher’s exact probability test. Continuous variables were compared by Student’s T test or Kruskal-Wallis test. Non-parametric variables were also compared using Kruskal-Wallis test. Statistical significance was set at $p < 0.05$. Data were analyzed using the SPSS package software.

This study was approved by our institutional review board.

Perioperative antithrombotic management

The perioperative antithrombotic management protocol for abdominal and general surgery have been established in our institution to manage thromboembolic risk patients (“Kokura Protocol”), and we have reported that the abdominal surgery in patients with antiplatelet therapy can be performed safely and satisfactorily under the Kokura Protocol without increase of bleeding and thromboembolic complications5-7. Briefly, the protocol consisted of interrupting APT one week before surgery and early postoperative reinstitution in low thromboembolic risk patients, and in case of high thromboembolic risks such as patients with drug-eluting coronary stent (DES) implantation or those with cerebrovascular reconstruction within 3 months, preoperative aspirin monotherapy was continued until surgery, followed by early postoperative reinstitution.

In patients with anticoagulation therapy such as warfarin, anticoagulation was substituted by bridging heparin in case of high thromboembolic risks. In patients using both APT and oral anticoagulation therapy, perioperative management of APT was also combined with those of anticoagulation therapy. For prevention of venous thromboembolism, mechanical prophylaxis (intermittent pneumatic compression and/or graduated compression stockings) and enforcement of early postoperative walking are generally performed, although routine use of medical prophylaxis with heparin is not adopted, except in case of high venous thromboembolic risk patients with previous venous thrombosis or immobilization.

Technical aspects of PD procedure

Our most prevalent type of the operative procedure is subtotal stomach-preserving PD. The procedure consists of (1) exposure of the portal vein (PV) and dissection of the lymph node (LN) around superior mesenteric vein (SMV); (2) kocherization; (3) skeletonization of the hilar vessels and LN dissection of the hepatoduodenal ligament; (4) transection of the stomach, jejunum and pancreatic neck; and (5) division of the connective tissue and nerve plexus beneath the pancreatic head, LN dissection of the left-side of the superior mesenteric artery (SMA), and removal of the surgical specimen.

The reconstruction is undertaken in retrocolic fashion and anastomosed with choledochojejunostomy, followed by pancreaticojejunostomy and gastrojejunostomy. The reconstruction is performed antecolically using autosuture devices.

During dissection of the tissue under preoperative continuation of antiplatelet therapy, the combination of modified PBC technique and use of HF is generally applied to reduce intraoperative blood loss (Figure 1). In the PBC technique, a small amount of soft tissue at the dissection plane is pinched with a fine-tipped forceps, and the tissue is coagulated by supplying an electric current by touching it with a monopolar electrocautery until the tissue is cut18,19. Our modified technique for PBC is that the main operator uses monopolar electrocautery in the right hand instead of forceps. Meticulous
vascular structure (3 mm or larger).

Figure 2 and 3 shows PD procedures using the combination technique of modified PBC technique and HF. After PV and SMV are exposed by the combination technique, modified PBC is mainly used during Kocherization and superficial dissection of the hepatoduodenal ligament (Figure 2A, 2B); subsequently HF is dominantly used for hilar skeletonization and LN dissection (Figure 2C, 2D). Dissection around the gut is achieved using both devices, and transection of the pancreas is performed by HF (Figure 3A, 3B). Finally, division of the connective tissue and nerve plexus beneath the pancreatic head and LN dissection of the left-side of SMA is accomplished by ligation and sutures of the large vessel structures (3 mm or more) and by severing them using HF (Figure 3C).

RESULTS

Table 1 shows background and tumor characteristics of 18 included patients. The patients were totally Asian, with the median age of 68 years (range; 60-81 years), and the ratio of female/male was 5/13.

Perioperative characteristics and postoperative morbidity in each group were demonstrated in Table 2. Age, gender, indication of APT was similar between the groups. For the texture of the remnant pancreas, ‘hard pancreas’ was more common in PC group, although the significant difference was not seen statistically between the groups. The median values of the operative time and estimated blood loss were 482 min (range; 320-576 min) and 511 mL (50-975 mL),
respectively. There were also no differences between the groups in the operative time, blood loss, or the rates of intraoperative red blood cell transfusion. No case suffering uncontrollable excessive intraoperative bleeding due to the continuation of APT was experienced, and platelet transfusion was not required in the current series. There is also no case with massive intraoperative bleeding (≥ 1,000 mL) in both groups.

Concerning the postoperative complications, the overall rate of complications was 38.9%. There was no difference between the groups in the rates of postoperative complications or length of postoperative stay. Two Grade B POPF (11.1%) and three Grade B PPH (16.7%, two intra-luminal and one extra-luminal) occurred postoperatively, but no patient suffered from Grade C PPH or POPF. There was no perioperative thromboembolic complication. Operative mortality was zero.

DISCUSSION

In the current paper, our technique during PD using combination of modified PBC technique and HF were described in detail, and satisfactory perioperative outcome was demonstrated in 18 patients with preoperative continuation of aspirin monotherapy. Despite of single APT continuation, there is no case with excessive surgical blood loss of 1,000 mL or more, and no Grade C PPH was experienced. The duration of operation and surgical blood loss were identical between patients with and without pancreatic cancer, and the occurrence of both thromboembolic complication and operative mortality was zero.

APT for prevention of cardiovascular/cerebrovascular events is widely used[19-21], and patients receiving APT often undergo surgical procedures. The incidence of post-PCI APT-burdened patients receiving non-cardiac surgery within 2 years is approximately 5-15%[21]. Premature discontinuation of antiplatelet agents is the known risk factor for late coronary stent thrombosis, a rare but life-threatening complications[21-23], therefore bleeding risk has to be balanced against thromboembolic risk in patients receiving APT. Current guidelines concerning endoscopic procedures or tooth extraction suggest that prevention of thromboembolism is more

<table>
<thead>
<tr>
<th>No.</th>
<th>Age, y, median (range)</th>
<th>Gender (Female/Male), n (%)</th>
<th>Hx of CI</th>
<th>Duration of ope, min, median (range)</th>
<th>Surgical blood, loss, mL, median (range)</th>
<th>Intraoperative RBC transfusion, n (%)</th>
<th>Postoperative complication, n (%)</th>
<th>Operative mortality, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>60</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>64</td>
<td>M</td>
<td>AP (DES)</td>
<td>high</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>87</td>
<td>M</td>
<td>AP (DES)</td>
<td>high</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>75</td>
<td>F</td>
<td>AP, CHF</td>
<td>high</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>66</td>
<td>M</td>
<td>AP (BMS)</td>
<td>high</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>81</td>
<td>M</td>
<td>AP (DES)</td>
<td>high</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>63</td>
<td>M</td>
<td>Post-Cl</td>
<td>high</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>67</td>
<td>M</td>
<td>AP (BMS)</td>
<td>high</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>79</td>
<td>M</td>
<td>Post-Cl</td>
<td>high</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>66</td>
<td>M</td>
<td>AP (DES)</td>
<td>high</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>66</td>
<td>F</td>
<td>AP (BMS)</td>
<td>high</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>76</td>
<td>F</td>
<td>AP (BMS)</td>
<td>high</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>75</td>
<td>M</td>
<td>AP (BMS)</td>
<td>high</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>60</td>
<td>F</td>
<td>AP (DES)</td>
<td>high</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>68</td>
<td>M</td>
<td>AP (DES)</td>
<td>high</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>74</td>
<td>M</td>
<td>AP (BMS)</td>
<td>high</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>70</td>
<td>M</td>
<td>AP (BMS)</td>
<td>high</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Abbreviations: TE, thromboembolism; preop., preoperative; ASA, aspirin, F, female; M, male; CI, cerebral infarction; AP, angina pectoris; DES, drug-eluting coronary stent; CHF, congestive heart failure; BMS, non-drug-eluting bare metal stent; AC, ampullary cancer; PC, pancreatic cancer; BGC, bile duct cancer; IPMA, intraductal papillary mucinous adenoma.

Table 1 Background characteristics of patients in the included 18 patients.

Table 2 Perioperative and outcome factors between patients with pancreatic cancer and other diseases.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Total (n = 18)</th>
<th>PC group (n = 8)</th>
<th>non-PC group (n = 10)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y, median (range)</td>
<td>68 (60-78)</td>
<td>67 (60-68)</td>
<td>69 (60-81)</td>
<td>0.702</td>
</tr>
<tr>
<td>Gender (Female/Male), n (%)</td>
<td>7 / 11 (72.2%)</td>
<td>5 / 3 (62.5%)</td>
<td>2 / 8 (80.0%)</td>
<td>0.087</td>
</tr>
<tr>
<td>Hx of PCI</td>
<td>15 (83.3%)</td>
<td>7 (87.5%)</td>
<td>8 (80.0%)</td>
<td>0.056</td>
</tr>
<tr>
<td>Duration of ope, min, median (range)</td>
<td>482 (320-576)</td>
<td>487 (350-536)</td>
<td>477 (320-576)</td>
<td>0.853</td>
</tr>
<tr>
<td>Surgical blood, loss, mL, median (range)</td>
<td>511 (50-975)</td>
<td>535 (100-960)</td>
<td>436 (50-975)</td>
<td>0.872</td>
</tr>
<tr>
<td>Postoperative complication, n (%)</td>
<td>5 (27.8%)</td>
<td>3 (35.7%)</td>
<td>2 (20.0%)</td>
<td>0.067</td>
</tr>
</tbody>
</table>

*Abbreviations: PC, pancreatic cancer; APT, antiplatelet therapy; PCI, percutaneous coronary intervention; CI, cerebral infarction; ope., operation; RBC, red blood cell; POPF, postoperative pancreatic fistula; PPH, post-pancreatectomy hemorrhage; postop., postoperative.

In the current paper, our technique during PD using combination of modified PBC technique and HF were described in detail, and satisfactory perioperative outcome was demonstrated in 18 patients with preoperative continuation of aspirin monotherapy. Despite of single APT continuation, there is no case with excessive surgical blood loss of 1,000 mL or more, and no Grade C PPH was experienced. The duration of operation and surgical blood loss were identical between patients with and without pancreatic cancer, and the occurrence of both thromboembolic complication and operative mortality was zero.

DISCUSSION

In the current paper, our technique during PD using combination of modified PBC technique and HF were described in detail, and satisfactory perioperative outcome was demonstrated in 18 patients with preoperative continuation of aspirin monotherapy. Despite of single APT continuation, there is no case with excessive surgical blood loss of 1,000 mL or more, and no Grade C PPH was experienced. The duration of operation and surgical blood loss were identical between patients with and without pancreatic cancer, and the occurrence of both thromboembolic complication and operative mortality was zero.

APT for prevention of cardiovascular/cerebrovascular events is widely used[19-21], and patients receiving APT often undergo surgical procedures. The incidence of post-PCI APT-burdened patients receiving non-cardiac surgery within 2 years is approximately 5-15%[21]. Premature discontinuation of antiplatelet agents is the known risk factor for late coronary stent thrombosis, a rare but life-threatening complications[21-23], therefore bleeding risk has to be balanced against thromboembolic risk in patients receiving APT. Current guidelines concerning endoscopic procedures or tooth extraction suggest that prevention of thromboembolism is more

Table 1 Background characteristics of patients in the included 18 patients.
crucial because it may cause severe postoperative life-threatening complications14-20. According to the guidelines of post-PCI surgical procedures such as the guideline from American College of Cardiology/American Heart Association, continuation of APT, but not using heparin bridging, should be considered in the perioperative period, particularly in patients with high thromboembolic risks21-23. In our institution, the rate of APT-burdened patients requiring major hepatobiliary and pancreatic surgery is as high as 30-40%, and the number is expected to be increasing. For this reason, we have established our own perioperative antithrombotic protocol (“Kokura Protocol”), and shown that performing abdominal surgery under continuation of preoperative aspirin monotherapy is safe and feasible21-27. The current study also demonstrated that pancreaticoduodenectomy, a highly invasive surgical procedure, can be performed safely without any increase of surgical blood loss or severe PPH in the same situation.

Surgical blood loss and intraoperative blood transfusion have been reported to be the major risk factors for postoperative complications after PD28-30. Furthermore, PPH after PD is a serious postoperative complication and is related to a high mortality rate of up to 60\%31. Therefore, suppression of intraoperative blood loss and PPH is an important goal when PD is performed, and various technical development has been introduced21,32-35. In our institution, two distinctive technique and device were combined to minimize the surgical blood loss; modified PBC technique and use of HF.

PBC technique was introduced for recipient’s operation during living-donor liver transplantation, using a fine-tipped monopolar forceps for tissue dissection16,11. Since the recipient for liver transplantation has abundant fine collateral vessels in the ligaments around the liver due to severe portal hypertension, the surgical procedure is associated with increased bleeding tendency and is more difficult than other abdominal procedures. In consideration of performing PD, many patients suffered from obstructive cholangitis or pancreatitis and therefore rich fine vessels in the ligament or tissues are also encountered. In the PBC technique, a 3-4 mm of width around the tip of the forceps is coagulated before cutting and small collateral vessels in a dissection surface are easily controlled21,12; thus this technique is suitable not only for recipient’s operation in liver transplantation, but also for pancreaticoduodenectomy.

In addition to PBC technique, we use HF for dissection of middle-sized vessels (1-3 mm in diameter) instead of suture or ligation. HF is a ultrasonically activated shear with a curved thin tip, and due to its small size and light weight it is easily handled and is specifically designed for fine and delicate dissection such as LN dissection22,23. Like other ultrasonic energy devices, it employs mechanical vibration for simultaneous coagulation and cutting by mechanical protein denaturing, and prompt bleeding control is achieved without suturing or ligation unless the vessel size is large (more than 3 mm in diameter). In patients receiving preoperative continuation of APT, activation and aggregation of platelets are inhibited and the process of thrombus formation in the cutting edge of the vessels is considered to be delayed. For this reason, Suture or ligation is exclusively applied for dissection of large vascular structures in APT-burdened patients. Otherwise, HF is desirable for meticulous dissection for the tissues with middle-sized vessels, and especially useful for dissecting the hepatoduodenal ligament as well as division of the nerve plexus beneath the pancreatic head, including the numerous small- to middle-sized vessels. We consider that even in APT-burdened patients, the combination of modified PBC technique and HF is one of the preferred technical options during PD to minimize surgical blood loss.

The current study has some limitations. It is a retrospective review from a single center, which lessens the efficacy of the conclusion. This limitation will be mitigated in a later follow-up study. Since we continue to manage high thromboembolic risk patients undergoing PD using the same operative policy and perioperative antiplatelet management, more patients will be accumulated to help us conclude the safety of our approach.

CONCLUSIONS

PD using modified PBC technique and Harmonic FOCUS® can be performed safely and satisfactorily even in APT-burdened patients with high thromboembolic risks. Maintenance of single APT should be considered in patients with high thromboembolic risk, even when PD is performed.

REFERENCES

Fujikawa T et al. Pancreatocoduodenectomy for antiplatelet-burdened patients

30. Yekebas EF, Wolfram L, Cataldeigimen G, Habermann CR,

Peer reviewer: Premashish Halder