Hepa-index, a New Biomarker Indicator of Hepatic Fibrosis in Patients with Chronic Liver Disease

ABSTRACT

AIM: Noninvasive methods for assessment and follow-up of hepatic fibrosis are important for the management of patients with chronic liver disease. Our aim was to assess a new panel of surrogate biomarkers for prediction of severe hepatic fibrosis in patients with chronic liver disease of different aetiology.

METHODS: 118 patients [62 males (52.5%) and 56 females (47.5%)] were prospectively enrolled with a mean age of 55.6 years ±14.9. The aetiology of chronic liver disease was hepatitis B virus infection (n=12), hepatitis C virus infection (n=20), autoimmune hepatitis (n=36), alcoholic steatohepatitis (n=10), non-alcoholic steatohepatitis (n=12), hepatocellular carcinoma (n=16). 12 patients had no evidence of liver disease. Biomarkers of hepatic fibrosis and liver function tests (α2-macroglobulin, haptoglobin, apolipoprotein A1, total bilirubin, GGT, ALT, total cholesterol, AST, albumin, CA19-9, CA125, CA 15-3, INR, platelet count, hyaluronic acid, nitric oxide) were analyzed in serum. As reference for staging of fibrosis we used FibroTest and FibroScan. Biomarkers were correlated to hepatic fibrosis by univariate and multivariate analyses as well as logistic regression.

RESULTS: Univariate and multivariate analysis indicated that platelet count, α2-macroglobulin, total bilirubin, GGT and total cholesterol were the most relevant biomarkers related to the stage of hepatic fibrosis. A new panel for prediction of severe hepatic fibrosis was created using these relevant parameters. Applying this panel; severe hepatic fibrosis was predicted with a sensitivity of 97.4% and a specificity of 85.9% in comparison with FibroTest. Also a sensitivity of 78.8% and specificity of 90.9% was obtained by the panel in comparison to FibroScan.

CONCLUSION: The new noninvasive panel allows accurate prediction of severe liver fibrosis in different types of chronic liver disease.

© 2012 Thomson research. All rights reserved.

Key words: Noninvasive; Biomarkers; Fibrosis; Liver; FibroTest; FibroScan

INTRODUCTION

Liver fibrosis (LF) is a significant health problem with a worldwide mortality attributable to its consequences (cirrhosis and primary liver cancer) of around 1.5 million deaths per year[1]. LF occurs in response to almost all causes of chronic liver injury[2] and is characterized by the excessive deposition of extracellular matrix (ECM) involving molecular and histological rearrangement of various types of collagens, proteoglycans, structural glycoproteins and hyaluronic acid.

Assessing LF is important for both predicting disease progression and monitoring efficacy of therapeutic measures[3]. Invasive diagnosis using liver biopsy with histological examination is most commonly used as reference standard for the assessment of fibrosis but is hampered by several disadvantages: large sampling error,
consistent inter-observer disagreement, high emotional cost of patient and enormous health care commitment in case of rare but possible severe complications. Besides, liver fibrosis is a dynamic process that cannot adequately be mirrored by the snapshot of a biopsy[2]. Thus, noninvasive methods of measuring the degree of hepatic fibrosis have been developed, such as surrogate serum fibrosis markers[28,29], liver stiffness measurement using FibroScan (Echosense, Paris, France)[30-34], various imaging methods[35] and glycomics[14,15]. Biochemical markers of LF, because they can be tested noninvasively, reproducibly, and reliably, may constitute a true alternative to liver biopsies[36]. Several noninvasive direct and indirect serum markers, capable to predict the presence of significant fibrosis or cirrhosis in patients with chronic liver disease have been reported[37]. In addition to widely used tests such as FibroTest or FibroMeter, other either indirect (aspartate aminotransferase, prothrombin time, platelets) or direct (type III procollagen-N-peptide, hyaluronic acid, metalloproteinases) markers, usually used in combination, have been evaluated[10,39]. Simple scores such as AST-to-platelet ratio index (APRI), Enhanced Liver Fibrosis (ELF) or FIB-4 have also been widely studied and have revealed interesting, albeit non-comprehensive, data on liver fibrosis, especially in terms of significant, extensive fibrosis or cirrhosis[10,20-23]. Recent studies showed the usefulness of some new markers as predictors for severe hepatic fibrosis (tumor markers CA19-9, CA125 and CA15-3)[30], extensive fibrosis [serum hyaluronic acid (HA)]14-16, or progression of chronic liver disease [serum nitric oxide (NO)]17. The combination of non-invasive tests to assess LF has recently also been used in chronic hepatitis C patients with the purpose of establishing new fibrosis stage classification based on the combined assessment of FibroMeter and FibroScan and has high diagnostic accuracy[30], but new markers that are more accurate and, above all, able to predict the outcome of liver fibrosis are still needed[10]. Aim of this study is to develop a new noninvasive index for predicting severe hepatic fibrosis.

PATIENTS AND METHODS

Patients
118 patients [62 males (52.5%) and 56 females(47.5%)] were enrolled, mean age 55.59±14.9 years; with different types of chronic liver diseases. 12 patients with chronic hepatitis B infection (HBV) (10.2%), 20 patients with chronic hepatitis C infection (HCV) (16.9%), 36 patients with autoimmune hepatitis (AIH) (30.5%), 10 patients with alcoholic steatohepatitis (ASH) (8.5%), 12 patients with non alcoholic steatohepatitis (NASH) (10.2%) and 16 patients with hepatocellular carcinoma (HCC) (13.6%) were prospectively recruited from the outpatient clinics of the Department of Gastroenterology, Hepatology and Infectious Diseases (Otto-von-Guericke University, Magdeburg, Germany) between March and June 2010 and were classified as test group. Another 12 patients (10.2%) with no evidence of liver disease were additionally recruited and classified as control group. Patients with other causes of liver disease e.g., Primary biliary cirrhosis (PBC), Primary sclerosing cholangitis (PSC), Wilson’s disease, and haemochromatosis were excluded. The study protocol was approved by the ethical committee of Otto-von-Guericke University, Magdeburg, Germany and informed consent to participate in the study was obtained from all subjects included.

Laboratory tests
After full history taking and clinical assessment, all patients were subjected to laboratory tests including: liver function tests; [alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma glutamyl transpeptidase (GGT), total bilirubin, international normalized ratio (INR)], total cholesterol, albumin and platelet count (using standard procedures). Serum levels of cancer antigen 19-9 (CA19-9), cancer antigen 125 (CA125), and cancer antigen 15-3 (CA15-3) (using ECLIA/ROCHE Diagnostics.) serum level of nitric oxide (NO) (using Total Nitric Oxide Assay kit, Assay Designs, USA), Hyaluronic acid (HA) (using TECO Hyaluronic acid ELISA Kit, TECO medical Group, Germany), haptoglobin and serum alpha-2-macroglobulin (α-MG) level using an automatic nephelometer (BNII, Dade Behring; Marburg, Germany), serum apolipoprotein A1 (Apo-A1) (using ELISA kits, Roche, Switzerland) were assessed. In patients with HCC the diagnosis was proven either by applying the EASL 2002 criteria[29] in patients with liver cirrhosis or invasively using liver biopsy and histopathological assessment. FibroTest (FT; Biopredictive, Paris, France) provided a numerical quantitative estimate of liver fibrosis ranging from 0.00 to 1.00, corresponding to the well-established METAVIR scoring system of stages F0 to F4[18-20].

Adiabomal ultrasound and liver stiffness
Abdominal ultrasound (using Philips IU22 xMATRIX Ultrasound system) and liver stiffness measurement using FibroScan (Echosens, Paris, France) were done for all subjects. FibroScan was performed on the right lobe of the liver through the right intercostal spaces at a depth of 25-45 mm from the skin surface with the patients lying in a dorsal decubitus position with the right arm in maximal abduction.

Table 1 Biochemical characteristics.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Mean</th>
<th>SD</th>
<th>Reference range</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-MG (g/L)</td>
<td>2.619</td>
<td>1.0528</td>
<td>1.50-3.10 g/L</td>
</tr>
<tr>
<td>Haptoglobin (g/L)</td>
<td>1.168</td>
<td>0.7776</td>
<td>0.80-2.00 g/L</td>
</tr>
<tr>
<td>Apo-A 1 (g/L)</td>
<td>1.616</td>
<td>0.4392</td>
<td>1.10-1.60 g/L</td>
</tr>
<tr>
<td>Bilirubin total (µmol/L)</td>
<td>13.05</td>
<td>13.644</td>
<td><21.0 µmol/L</td>
</tr>
<tr>
<td>GGT (IU/L)</td>
<td>90.385</td>
<td>131.5904</td>
<td>Male: 10.2-21.4 IU/L, Female: 6.4-21 IU/L</td>
</tr>
<tr>
<td>ALT (IU/L)</td>
<td>36.249</td>
<td>24.4120</td>
<td>Male: 10.2-49.5 IU/L, Female: 10.2-34.8 IU/L</td>
</tr>
<tr>
<td>Cholesterol (mmol/L)</td>
<td>5.0907</td>
<td>1.25477</td>
<td><5.2 mmol/L</td>
</tr>
<tr>
<td>AST (IU/L)</td>
<td>40.29</td>
<td>19.442</td>
<td>Male: 17.8-33 IU/L, Female: 17-38.1 IU/L</td>
</tr>
<tr>
<td>Albumin (g/L)</td>
<td>43.955</td>
<td>5.0903</td>
<td>35.0-52.0 g/L</td>
</tr>
<tr>
<td>CA125 (U/ml)</td>
<td>53.781</td>
<td>163.939</td>
<td><35 U/ml</td>
</tr>
<tr>
<td>CA19-9 (U/ml)</td>
<td>25.617</td>
<td>37.3570</td>
<td><27 U/ml</td>
</tr>
<tr>
<td>CA15-3 (U/ml)</td>
<td>21.474</td>
<td>11.5471</td>
<td><25 U/ml</td>
</tr>
<tr>
<td>INR</td>
<td>0.9871</td>
<td>0.16925</td>
<td><1.25</td>
</tr>
<tr>
<td>Platelet count (Gpt/L)</td>
<td>222.95</td>
<td>98.619</td>
<td>150-375 Gpt/L</td>
</tr>
<tr>
<td>NO (µmol/L)</td>
<td>50.242</td>
<td>22.0234</td>
<td>3.125-100 umol/L</td>
</tr>
<tr>
<td>HA (ng/mL)</td>
<td>261.3526</td>
<td>332.5604</td>
<td>Male “MoareSDF” 42.6±24.6 ng/mL; (Femlae postmenopausal “MoareSDF” 201±43.4 ng/mL; (Femlae premenopausal “MoareSDF” 30.3±19.9 ng/mL</td>
</tr>
</tbody>
</table>

FibroScan (kPa) 15.683 17.4019 <7 kilo pascals

Table 1 Biochemical characteristics.

Glutamine synthetase (GS), aspartate aminotransferase (AST), gamma glutamyl transpeptidase (GGT), total bilirubin, international normalized ratio (INR), total cholesterol, albumin and platelet count (using standard procedures). Serum levels of cancer antigen 19-9 (CA19-9), cancer antigen 125 (CA125), and cancer antigen 15-3 (CA15-3) (using ECLIA/ROCHE Diagnostics.) serum level of nitric oxide (NO) (using Total Nitric Oxide Assay kit, Assay Designs, USA), Hyaluronic acid (HA) (using TECO Hyaluronic acid ELISA Kit, TECO medical Group, Germany), haptoglobin and serum alpha-2-macroglobulin (α-MG) level using an automatic nephelometer (BNII, Dade Behring; Marburg, Germany), serum apolipoprotein A1 (Apo-A1) (using ELISA kits, Roche, Switzerland) were assessed. In patients with HCC the diagnosis was proven either by applying the EASL 2002 criteria[29] in patients with liver cirrhosis or invasively using liver biopsy and histopathological assessment. FibroTest (FT, Biopredictive, Paris, France) provided a numerical quantitative estimate of liver fibrosis ranging from 0.00 to 1.00, corresponding to the well-established METAVIR scoring system of stages F0 to F4[18-20].

Abdominal ultrasound and liver stiffness
Abdominal ultrasound (using Philips IU22 xMATRIX Ultrasound system) and liver stiffness measurement using FibroScan (Echosens, Paris, France) were done for all subjects. FibroScan was performed on the right lobe of the liver through the right intercostal spaces at a depth of 25-45 mm from the skin surface with the patients lying in a dorsal decubitus position with the right arm in maximal abduction. The tip of the transducer probe was covered with coupling gel and the obtained elasticity value was determined as the median of 10 measurements. The results were expressed in kilopascals (KPa). Only those procedures with consecutive 10 validated measurements with a success rate more than 60% and the interquartile range less than 30% of the median value were included.

Statistical Analysis
The patients’ biochemical characteristics and FibroScan results are given as the mean±SD as appropriate (Table 1). Fibrosis stage was assessed using FibroTest (FT; Biopredictive, Paris, France) and FibroScan (Echosens, Paris, France). The main endpoint was discriminating patients with severe fibrosis (F3, F4) from those with early or no fibrosis (F0, F1, F2) using a combination of relevant biomarkers (variables). Variables that had a significant relation of
Alboraié M. et al. Hepa-index

The frequencies of normal and abnormal values to fibrosis stages were identified by Chi-square tests. The variables that were significant in the univariate analysis \((P \leq 0.05)\) were included in a logistic regression analysis to determine the independent predictors of fibrosis stage. The three final panels (Table 2) were determined in different ways: Panel 1 by entering several variables into the logistic regression that were suspected to be predictive, panel 2 by including only one of the favored variables (CA125) and adding others in a stepwise procedure in order of their relevance. And panel 3 was built totally data-driven by a stepwise logistic regression. A cross-validation was done in each case. A predictive index (according to each model) was constructed by using the regression coefficients of the independent variables (tables 3 for the third model). The diagnostic value of the index was assessed by calculating the area under the receiver operating characteristic (ROC) curves (Figure 1 and (Figure 2) for the third panel. Diagnostic accuracy was calculated by sensitivity, specificity, positive and negative predictive values for a chosen cut-off. The cut-offs selected from the ROC curve were those that best discriminate between severe (F3, F4) and early or no fibrosis (F0, F1, F2). A \(p\)-value of 0.05 was set to be the level of statistical significance. Statistical analyses were performed with SPSS 17.0 (IBM Corporation, Somers, NY).

Table 2 Statistical models (panels) applied.

<table>
<thead>
<tr>
<th>Model (panel)</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model (panel) 1</td>
<td>(\exp(0.065 * CA125 +0.004 * CA19-9 +0.104 * CA15-3 +0.004 + HA-0.005 * NO-4.609))</td>
</tr>
<tr>
<td>Model (panel) 2</td>
<td>(\exp(0.082 * CA125 +1.479 * \alpha-MG +0.231 * Bilirubin total -9.713))</td>
</tr>
<tr>
<td>Model (panel) 3 (Hepa-Index)</td>
<td>(\exp(-0.021 * Platelet +1.65 * \alpha-MG +0.2 * Bilirubin total +0.026 * GGTT-1.215 +0.231 * Bilirubin total -9.713))</td>
</tr>
</tbody>
</table>

Figure 1 Hepa-Index ROC curve for severe fibrosis (F3-F4) referred to FibroTest.

RESULTS

We studied 118 patients with chronic liver disease of different aetiology. The biochemical characteristics and FibroScan results are shown in Tables 1. FibroTest was done for all cases. FibroScan was possible in only 66 patients (55.93%), 33 patient (27.96%) had severe fibrosis (F3-F4) and 33 patient (27.96%) had early or no fibrosis (F0-F2). With FibroTest as reference univariate analyses revealed that: alpha-2-macroglobulin, total bilirubin, GGT, total cholesterol, CA125, CA19-9, CA15-3, platelet count, hyaluronic acid and nitric oxide were the most relevant variables associated with severe fibrosis. Relevant variables were combined in partial stepwise logistic regression analyses to create several panels to predict severe LF. We developed 3 different panels (Table 2):

Panel 1: composed of CA125, CA19-9, CA15-3, hyaluronic acid and nitric oxide.
Panel 2: composed of CA125, alpha-2-macroglobulin, total bilirubin.
Panel 3: composed of CA125, alpha-2-macroglobulin, total bilirubin, GGT and total cholesterol.

Panel 1 provided an AUC [95% confidence interval (CI)] for the prediction of severe LF [0.839 (0.743-0.935)] when FibroTest is used as the reference for the fibrosis stage and [0.815 (0.705-0.925)] when FibroScan used as a reference for the fibrosis stage. Panel 2 provided an AUC [95% confidence interval (CI)] for the prediction of severe LF [0.950 (0.912-0.989)] when FibroTest is used as the reference for the fibrosis stage and [0.795 (0.686-0.904)] when FibroScan used as a reference for the fibrosis stage. Panel 3 (Hepa-Index) was the best model which provided a high AUC [95% confidence interval (CI)] for the prediction of severe LF [0.983 (0.964-1.000)] when FibroTest is used as the reference for the fibrosis stage as shown in (Figure 1 and (Figure 2) and [0.869 (0.777-0.960)] when FibroScan used as a reference for the fibrosis stage (Figure 3). A “cut-off” value of 0.2012 predicted severe fibrosis (F3-F4) with a sensitivity of 97.4% and a specificity of 85.9%. Table 3 summarizes the results of the single parameters used for Hepa-Index in the distinct patients groups in different fibrosis stages indicating the positive correlations for bilirubin, alpha-2-macroglobulin, GGT with increasing fibrosis stage and the negative correlation of platelet count and cholesterol.

The Hepa-Index is also correlated with FibroScan results (Figure 2). A “cutoff point” of 0.2012 predicted severe fibrosis (F3-F4) with a sensitivity of 78.8% and a specificity of 90.9%. Cross-validation results were less than 5% different.

DISCUSSION

In our study we assessed a set of 17 serum parameters that predict LF (alpha-2-macroglobulin, haptoglobin, apolipoprotein A1, total bilirubin,
Table 3 Mean values±SD of variables included in Model 3 (Hepa-Index) in different fibrosis stages.

<table>
<thead>
<tr>
<th>Grade of Fibrosis</th>
<th>F0</th>
<th>F0-F1</th>
<th>F1</th>
<th>F1-F2</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
</tr>
</thead>
<tbody>
<tr>
<td>according to FibroTest</td>
<td>n=44, n=9, n=5, n=10, n=10, n=11, n=29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α2-MG (g/L)</td>
<td>1.94±0.48</td>
<td>1.88±0.45</td>
<td>2.45±0.68</td>
<td>3.39±0.94</td>
<td>3.33±0.77</td>
<td>3.16±1.07</td>
<td>3.32±1.16</td>
</tr>
<tr>
<td>Total bilirubin (µmol/L)</td>
<td>7.83±3.96</td>
<td>12.05±6.09</td>
<td>9.16±5.35</td>
<td>9.05±4.65</td>
<td>9.10±4.39</td>
<td>10.81±4.98</td>
<td>25.5±22.27</td>
</tr>
<tr>
<td>Cholesterol (mmol/L)</td>
<td>5.42±1.23</td>
<td>4.82±0.90</td>
<td>6.85±1.31</td>
<td>5.88±1.14</td>
<td>4.80±1.07</td>
<td>4.79±1.02</td>
<td>4.13±1.06</td>
</tr>
<tr>
<td>GGT (IU/L)</td>
<td>34.19±26.53</td>
<td>85.27±82.75</td>
<td>106.92±105.35</td>
<td>47.4±58.46</td>
<td>37.32±22.59</td>
<td>84.66±57.63</td>
<td>211.1±438.42</td>
</tr>
<tr>
<td>Platelet (Gpt/L)</td>
<td>300.6±78.89</td>
<td>258.4±95.46</td>
<td>237.2±33.14</td>
<td>244.9±7.90</td>
<td>172.4±51.03</td>
<td>160.5±70.29</td>
<td>138.2±66.47</td>
</tr>
<tr>
<td>Hepa-Index</td>
<td>0.0059±0.02277</td>
<td>0.0947±0.11402</td>
<td>0.1054±0.011503</td>
<td>0.0869±0.10095</td>
<td>0.3385±0.34195</td>
<td>0.5779±0.31953</td>
<td>0.9549±0.11235</td>
</tr>
</tbody>
</table>

α2-MG: Alpha-2-macroglobulin; GGT: gamma glutamyl transpeptidase.

GGT, ALT, total cholesterol, AST, albumin, CA19-9, CA125, CA15-3, INR, platelet count, ha lyuronic acid and serum level of nitric oxide) in different types of chronic liver diseases. Among the 17 serum parameters we identified five (alpha-2-macroglobulin, total bilirubin, GGT, platelet count and total cholesterol) as most relevant predictors of hepatic fibrosis in the studied patients. The findings are concordant with results of Naveau et al who found that increased α2-macroglobulin has a significant diagnostic value for staging hepatic fibrosis in patients with alcoholic liver disease[15,30] and Azer et al. who reported that progression of fibrosis lead to an increase of bilirubin as a result of impaired hepatic excretion and enterohepatic circulation which is attributed to portal systemic shunting[37]. Also Hepa-Index has previously been found to correlate with liver fibrosis among patients infected with hepatitis B and C[31-34]. More over Wai et al[35] proposed a simple and elegant model of AST-to-platelet ratio index (APRI), which predicted bridging fibrosis as determined by the Ishak scoring system, with an AUC of 0.80-0.88. Another model, developed by Forns et al[36], included the routinely measured variables of GGT, cholesterol, platelet count, and prothrombin time in combination with age.

ACKNOWLEDGMENTS
We thank Ursula Stolz, Nicole Karsulke, and Ulrike von Arnim for
their contributions.

REFERENCES

1 World Health Organisation. Revised global burden of disease 2002 estimates; http://www.who.int/healthinfo/

2 Manning DS, Afdhal NH. Diagnosis and quantitation of fibrosis. Gastroenterology 2008; 134: 1670-1681

5 Wai CT, Greenson JK, Fontaine RJ, Kalbfeilsch JD, Marrero JA, Conjeevaram HS, Lok AS. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology 2003; 38: 518-526

14 Han KH, Yoon KT. New diagnostic method for liver fibrosis and cirrhosis. Interimorov 2008; 51 Suppl 1: 11-16

15 Leroy V. Other non-invasive markers of liver fibrosis. Gastroenterol Clin Biol 2008; 32: 52-57

18 Schöninger-Hekele M, Muller C. The combined elevation of tumor markers CA 19-9 and CA 125 in liver disease patients is highly specific for severe liver fibrosis. Dig Dis Sci 2006; 51: 338-345

20 Friedrich-Rust M, Rosenberg W, Parkes J, Herrmann E, Zeuzem S, Sarrazin C. Comparison of ELF, FibroTest and FibroScan for the non-invasive assessment of liver fibrosis. BMC Gastroenterol 2010; 10: 103

42 Poynard T, Bedossa P, Opolon P. Natural history of liver fibrosis progression in patients with chronic hepatitis C. The OBSVIRC, METAVIR, CLINIVIR, and DOSVIRC groups. Lancet 1997; 349: 825-832
45 Bonacini M, Hadi G, Govindarajan S, Lindsay KL. Utility of a discriminant score for diagnosing advanced fibrosis or cirrhosis in patients with chronic hepatitis C virus infection. Am J Gastroenterol 1997; 92: 1302-1304

Peer reviewers: Saad A Noeman Professor of Immunology and Molecular biology, Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Elgesh street ,Tanta post code 31512, Egypt; Axel M. Gressner, Professor, Lutherweg 2, 52074 Aachen, Germany.