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ABSTRACT
Nonalcoholic fatty liver disease (NAFLD) is a well-known hepatic 
disease without a history of alcohol abuse, which displays a 
dysfunction of the normal processes of lipid synthesis and elimination 
in hepatocytes. The chronic endoplasmic reticulum (ER) stress 
caused by lipid accumulation in hepatocytes interferes with normal 
cellular function. In addition, inflammation has been thought to be 
associated with the formation of nonalcoholic steatohepatitis (NASH) 
and promotes the progression to hepatic fibrosis and liver cirrhosis. 
Opioid receptors seem to be involved in the regulation of lipid and 
energy metabolism. Furthermore, the pathogenesis of NAFLD can be 
improved by the modulation of opioid receptors to attenuate hepatic 

lipid abnormalities. Thus, the identification of potential compounds 
by targeting opioid receptors in the improvement of NAFLD is 
promising.
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INTRODUCTION
Nonalcoholic fatty liver disease (NAFLD) has attracted much 
attention in the recent years. The clinical diagnosis and evaluation 
of NAFLD can be diagnosed based on physical examination, 
illness history, ultrasound examination and hepatic imaging[1]. 
NAFLD begins as lipid accumulation in the liver (hepatic 
steatosis), and inflammation can induce the pathogenesis of non-
alcoholic steatohepatitis (NASH) that can progress to different 
degrees of hepatic fibrosis and hepatocellular carcinoma[2]. The 
pathogenesis of hepatic steatosis is related to lifestyles, dietary 
habits and environmental factors[3]. Additionally, genetic factors and 
polymorphisms also contribute to the formation of hepatic steatosis[4]. 
Moreover, the dysfunction of lipid metabolism in the liver is 
associated with NAFLD because the increased accumulation of fatty 
deposition in the liver can initiate a series of inflammatory responses 
and pathologic changes. Interestingly, opioid receptors and peptides 
have been thought to play a critical role in the regulation of endocrine 
metabolism and glucose homeostasis in the past studies[5-7]. However, 
the effect and mechanism of opioid receptors on the improvement of 
NAFLD are still unclear. Thus, the review aims to summarize how 
NAFLD is prevented from further progression by targeting opioid 
receptors to modulate the lipid metabolism. 
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and energy metabolism remains obscure. Cholesterol contributes 
to opioid receptor signaling via two mechanisms: maintaining the 
entirety of lipid raft microdomains and directly facilitating opioid 
receptor signaling[21]. On one hand, the activation of central opioid 
receptors by selective agonists can stimulate appetite[22]. Interestingly, 
the stimulation of hypothalamic MOR promotes the preference 
of HFD[23], and HFD also induces fat accumulation via the higher 
expression of MOR in the brain suggesting decreased release of 
endogenous μ-opioid peptides[24,25]. In addition, galanin-induced 
feeding of HFD is specifically modulated by MOR signaling pathway 
in sated condition, whereas that is mediated by KOR in starvation[26]. 
On the other hand, endogenous opioid peptides namely enkephalin 
and β-endorphin are thought to modulate energy consumption 
and body weight via targeting MOR and DOR[27,28]. Obesity with 
increased adiposity and impaired glucose tolerance is resistant in 
MOR deficient (MOR-/-) mice fed with HFD, which is associated 
with the activation of metabolic enzymes involved in fatty acid 
oxidation in skeletal muscle[29]. The long term administration of 
opioid receptor antagonists can suppress appetite and body weight 
gain in genetic obese animal models or obese humans[30,31]. The 
inhibition of opioid receptors by opioid antagonists can improve 
HFD-induced dyslipidemia[32]. Moreover, the antagonism of opioid 
receptors can also reduce fat accumulation by the stimulation of 
lipid utilization and the inhibition of energy intake[33,34]. Thus, the 
involvement of opioid receptors plays a critical role in lipid and 
energy metabolism.

THE REGULATION OF OPIOID RECEPTORS 
IN NON-ALCOHOLIC FATTY LIVER DISEASE
So far, the role of opioid receptors in the improvement of NAFLD 
has not been clarified. According to the previous report, the hepatic 
expressions of MOR and DOR but not KOR were present in the rat 
indicating the distribution difference of opioid receptor subtypes[35]. 
Some studies have shown that opioid receptors can be potential 
drug targets in the improvement of liver diseases[36,37]. Opioid signal 
transduction is upregulated in patients with inflammatory liver 
disease, and some opioid-like compounds exert immunomodulatory 
activities to attenuate inflammation[38]. In obese patients with 
NAFLD, the increased expression of opioid receptors within gastric 
mucosa is related to the induction of inflammatory cytokines 
suggesting the effect of opioid receptors on the pathogenesis of 
NAFLD[39]. The activation of MOR with peripheral MOR agonist 
can prevent acute hepatic inflammation and cell death induced by 
hepatotoxin[40]. The overexpression of KOR in lateral hypothalamic 
area (LHA) can induce hepatic steatosis via parasympathetic 
nervous system to regulate lipid metabolism, but silencing of KOR 
expression can abolish hepatic steatosis[41]. The attenuation of KOR 
expression can decrease hepatic triglyceride synthesis in mice fed 
with high-energy diet (HED)[42]. In addition, melanin-concentrating 
hormone (MCH) increases lipid accumulation by the activation of 
MCH receptors through the parasympathetic nervous system, which 
promotes the formation of hepatic steatosis[43]. Mice lacking DOR 
by genetic disruption can decrease hepatic lipid content through the 
higher expression of adipose triglyceride lipase (ATGL) and increase 
thermogenesis in brown adipose tissue (BAT) involved in the 
activation of uncoupling protein 1 (UCP1), peroxisome proliferator-
activated receptor gamma coactivator-1 α (PGC1α), and fibroblast 
growth factor 21 (FGF21)[44,45]. The higher expression of DOR 
in hepatocellular carcinoma (HCC) is associated with the tumor 
progression, which can be attenuated by the silencing of DOR[46]. 

THE ROLE OF LIPID METABOLISM WITH 
INFLAMMATION IN NON-ALCOHOLIC 
FATTY LIVER DISEASE
Lipids consist of many molecules such as phospholipids, fatty acids, 
cholesterols, and triglycerides. Hepatic lipid metabolism contains 
fatty acid synthesis, lipoprotein synthesis and lipid oxidation[8], which 
is controlled at the genomic levels by multiple regulatory proteins, 
metabolic enzymes, transcription factors and coregulators, such as 
fatty acid transport protein (FATP), carbohydrate responsive element 
binding protein (ChREBP), sterol regulatory element binding protein 
(SREBP), acetyl-CoA carboxylase (ACC), lipoprotein lipase (LPL), 
liver X receptor (LXR), farnesoid X receptor (FXR), and peroxisome 
proliferator-activated receptor (PPAR)[9]. The impairment of lipid 
metabolism leads to excessive lipid accumulation and triggers 
inflammatory responses. Some studies have shown that inflammation 
is involved in many metabolic diseases, including diabetes, 
hypertension, and NAFLD[10,11]. Inflammation disturbs cellular 
metabolism and function via the endoplasmic reticulum (ER) stress 
or oxidative stress, which induces metabolic diseases by interfering 
with normal glucose and lipid metabolism[12,13]. Inflammatory 
cytokines can attenuate the sensitivity of metabolic tissues or organs 
for metabolic hormones by disrupting the signal transduction of 
glucose and lipid metabolism[14]. Take type 2 diabetes for example, 
higher levels of inflammatory cytokines [e.g., Interleukin-1 beta (IL-
1β), Interleukin-6 (IL-6), Interleukin-18 (IL-18), C-reactive protein 
(CRP)], tumor necrosis factor (TNF)-α and low levels of adiponectin 
are closely associated with the induction of insulin resistance[15]. 
Additionally, the impairment of lipid metabolism via inflammatory 
response has been reported in NAFLD, and lipotoxicity-induced 
hepatic injury is characterized by the presence of inflammatory cells 
in NASH [16]. For the exploration of hepatic lipid metabolism, many 
animal models have been adopted for the investigation of NAFLD 
or NASH, including three main types of animal models: (1) Genetic  
animal models [e.g., SREBP-1c transgenic mice, ob/ob mice, db/db 
mice and phosphatase and tensin homologue deleted on chromosome 
10 (PTEN) null mice]; (2) Nutritional/dietary animal models [e.g., 
methionine and choline deficiency (MCD) diet, high fat diet (HFD), 
fructose diet and atherogenic diet]; (3) Combined animal models of 
genetic modification and dietary factors [e.g., db/db mice fed with 
MCD diet and PPAR-α null mice fed with MCD diet][17]. Although 
no animal model can completely exhibit hepatic pathophysiology of 
NAFLD or NASH in humans, the researchers can select the suitable 
animal model for their studies according to their experimental 
design. In summary, the dysfunction of hepatic lipid metabolism with 
inflammation has a great influence on the development of NAFLD.

THE EFFECT OF OPIOID RECEPTOR ON LIPID 
AND ENERGY METABOLISM
Opioid receptors belong to inhibitory G protein-coupled receptors. In 
general, opioid receptors are classified into three subtypes, including 
mu (μ)- opioid receptors (MOR), kappa (κ)- opioid receptors (KOR) 
and delta (δ)-opioid receptors (DOR)[18]. In addition, the endogenous 
opioid peptides contain dynorphins, enkephalins, endorphins, 
endomorphins and nociceptin. The regulation of opioid receptors 
with opioid agonists or antagonists can affect many cellular and 
neuronal signal transductions. Many studies have reported that 
opioid receptors have beneficial effects on the regulation of glucose 
metabolism[19, 20]. However, the regulation of opioid receptors on lipid 
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Taken together, the blockade of opioid receptors by genetic silencing 
or chemical antagonists provides beneficial effects for the impairment 
of lipid metabolism in NAFLD.

CONCLUSION
In conclusion, the regulation of lipid metabolism by targeting 
opioid receptors can improve NAFLD and attenuate the progression 
to NASH and hepatic fibrosis. Therefore, the development of 
compounds for targeting opioid receptors will be beneficial for the 
clinical patients with NAFLD. 
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