INTRODUCTION
Portal hypertension, as a complication of liver cirrhosis or in the setting of non-cirrhotic portal hypertension, leads to different complications ranging from the development of varices to upper gastrointestinal bleeding from ruptured gastroesophageal varices and portal hypertensive gastropathy, to ascites, hepatic encephalopathy and hepatorenal syndrome [1]. Portal hypertension is defined as an increase in the portal venous pressure above the normal values of 1-5 mmHg. Nowadays we don’t usually measure directly the portal pressure but estimate it using the hepatic venous pressure gradient (HVPG), measured as the difference between the wedged (portal vein) and the free hepatic venous pressures (inferior vena cava). The HVPG value of 10 mmHg is used to define clinically significant portal hypertension, the level of portal pressure above which complications can arise [2-5].

The prevalence of varices in cirrhotic patients ranges from 30 to 60%, according to the presence of decompensation [6] and prospective studies have shown that more than 90% of patients will develop esophageal varices during their lifetime (Figure 1). The expected incidence of newly developed varices is about 5% per year [7,8]. Once varices develop their rate of progression in size is 5-30% per year according to the study population and follow-up endoscopic schedule [8-12]. The main prognostic factors associated to progression of small to large varices are decompensated cirrhosis (Child B/C), alcoholic etiology of cirrhosis, HVPG and the presence of red wale markings on the esophageal varices at the time of baseline endoscopy [9,11,13].

Acute variceal bleeding in patients with cirrhosis indicates decompensation and a high-risk of death [9]. The annual rate of bleeding, in absence of treatment, is 10%-15% [14,15]. The most important predictors are variceal size [9,10,16], presence of red signs on varices [17,18], and severity of liver dysfunction defined by the Child-Pugh classification [19]. These risk indicators have been combined in the North Italian Endoscopy Club (NIEC) index, which allows the classification of patients into different groups with a predicted 1-year bleeding risk ranging between 6 and 60%. The risk of bleeding is
very low (1%-2%) in patients without varices at the first examination, and increases to 5% per year in those with small varices, and to 15% per year in those with medium or large varices at diagnosis. Another important determinant of variceal bleeding is the degree of portal pressure: variceal bleeding only occurs if the HVPG reaches a threshold value of 12 mmHg, if the HVPG is reduced below 12 mmHg or by more than 20% of the baseline levels the risk of bleeding is substantially reduced.

In patients with cirrhosis, ruptured esophageal varices cause approximately 70% of all upper digestive bleeding and are the second most common cause of mortality for cirrhotic patients. Mortality from variceal bleeding has greatly decreased during the last decades to the current rates of 6-12%.[8-10,22-24] Causes of bleeding related death (i.e. any death occurring within 6 weeks from hospital admission for variceal bleeding) are uncontrolled bleeding in 4-8% of cases,[20,21] reblooding and infection, renal failure, hepatic encephalopathy (these are also prognostic indicators of morbidity and mortality after the first bleeding).[27] Other factors independently associated with a higher mortality are severe liver dysfunction, HVPG >20 mmHg and active bleeding at endoscopy.[26,31].

MANAGEMENT OF VARICEAL BLEEDING

The management of the acute variceal bleeding is a multidisciplinary process[25] that includes the initial assessment of the patient, effective resuscitation, timely diagnosis, control of bleeding, and prevention of early reblooding and complications such as infection, hepatorenal syndrome, or hepatic encephalopathy. **Blood volume restitution** should be performed to maintain hemodynamic stability; packed red blood cells should be transfused conservatively aiming at hemoglobin levels between 7-8 g/dL.[25,35] avoiding over transfusion which could be the cause of reblooding.[25,36] Transfusion policy, however, should also consider the presence of co-morbidities, age, hemodynamic status and ongoing bleeding. Definitive recommendations regarding management of coagulopathy and thrombocytopenia cannot be made on the basis of currently available data.[25]. **Antibiotic prophylaxis** should be instituted from admission. It should consist of oral quinolones for most patients considering intravenous ceftriazone in patients with advanced cirrhosis, in hospital settings with high prevalence of quinolone-resistant bacterial infections and in patients on previous quinolone prophylaxis.[25,35,36]. Vasoactive drugs (terlipressin, somatostatin, octreotide, vaptareotide) should be started as soon as possible, even before endoscopy.[27]. Vasoactive drugs used in combination with endoscopic therapy allow a better control of hemorrhage than drug therapy or endoscopy alone.[28]. No significant differences have been found in several studies between different vasoactive drugs in the control of the index bleeding and in the prevention of recurrence. Terlipressin is the only vasoactive drug that has a positive effect on survival.[29]. In clinical practice the choice of the vasoactive drug is based on its availability and on its cost. Vasoactive drugs therapy should be prolonged for 2-5 days according to control of bleeding and can be stopped after 24 hours free from bleeding. A post hoc analysis of a trial suggested that with higher dose of somatostatin (500 μg/h) control of bleeding and better survival can be achieved in significantly higher proportion of patients,[29], but this finding has never been confirmed in other trials. **Endotracheal intubation** may be needed in selected cases.[30]. **Balloon tamponade** can also be used as a bridge therapy to obtain temporary hemostasis (maximum 24 hours).[26]. Recently preliminary studies have shown that the placement of self-expanding metallic stents as an alternative to balloon tamponade for the control of refractory variceal hemorrhage may be beneficial,[31,32] but these findings must be confirmed in other trials before their use can be introduced in clinical practice. **Emergency EGD** may be at the same time diagnostic and therapeutic. When it is performed early, 39-44% of patients present with active bleeding, 33-44% with signs of recent bleeding (clots or “white nipple” on varices)[33] and 12-28% have no sign of active or recent hemorrhage.[26].

ESOPHAGEAL VARICEAL BLEEDING

Endoscopic treatment of EV may be performed by endoscopic sclerotherapy (ES) and endoscopic variceal ligation (EVL).

Endoscopic Sclerotherapy (ES)

ES, first described in 1939 by Crafford and Frenckner[40] is currently performed using flexible catheters with a short needle tip (23 or 25 gauge). Different sclerosant agents (e.g. sodium morrhuate, podidocanol, ethanolamine, alcohol, and sodium tetradecyl sulphate) have been used in controlled trials[41] and nowadays the most commonly used agents are ethanolamine oleate (5%) or polidocanol (1%-2%) in Europe, and sodium morrhuate (5%) in the United States[42,43]. The injection of the sclerosant agent may be performed into the variceal lumen (intravariceal) or adjacent to it (paravariceal) inducing thrombosis of the vessel and inflammation of the surrounding tissues[44,45] leading to fibrosis and resulting in variceal obliteration[46]. Intravariceal injection forms a fibrotic layer around varices while intravariceal injection, directly induces variceal thrombosis. Injection of sclerosant should be first made immediately below the bleeding point (1-3 mL) and then in the remaining varices near the bleeding one (2-3 mL injections). The total amount of sclerosant per session is usually 10-15 mL. Both intravariceal and paravariceal injections have been associated with good outcomes[41] and no differences have been found with different sclerosants[42], the volume injected, or frequency of sessions[43]. Compared to EVL, ES is easier to use since it does not require to withdraw and reinsert the endoscope. Complications of ES are more frequent than those of EVL[47,48,49]. The complications can be classified as local: esophageal ulcers, ulcer bleeding, and esophageal stricture; cardiovascular and respiratory: pleural effusion, acute respiratory distress syndrome, and pericarditis;
and systemic: fever, bacteremia, spontaneous bacterial peritonitis, distant embolism or abscess. Frequent minor complications that do not require treatment occur within the first 24-48 hours: retrosternal chest pain, low grade fever, dysphagia, asymptomatic pleural effusions, nonspecific chest radiographic changes. Esophageal ulcers occur in up to 90% of patients and may cause bleeding in 20% of patients. They should be prevented and treated with proton pump inhibitors; the efficacy of sucralfate in treating these ulcers and preventing rebleeding is not clear. Bacteremia may occur in up to 35% of patients and may be responsible for the development of abscesses and spontaneous bacterial peritonitis. Less frequent complications are esophageal stenoses (2-10% of cases) and esophageal perforation. Death for post-ES complications may occur in 2% of patients.

In a Cochrane meta-analysis ES was not shown to be superior to the vasoactive drug therapy for the control of bleeding, rebleeding, and mortality.

Endoscopic Variceal Ligation (EVL).

Endoscopic Variceal Ligation (EVL). The first reports of EVL appeared in 1988 by Stiegmann et al. While ES used chemical action to obliterate varices, EVL causes a mechanical strangulation with rubber bands that induces thrombosis with ischemic necrosis of the mucosa. EVL consists in placing rubber rings on esophageal varices after sucking them into a plastic cylinder attached to the tip of the endoscope. The bands should be placed on the varix at the point of bleeding or starting from the gastroesophageal junction in a helical fashion for 6-8 cm within the palisade and perforating zones. The rubber bands on the ligated varix detach in 1-10 days leaving shallow esophageal ulcers and smaller esophageal varices. The ulcers generated by EVL are bigger and shallower than those of ES and heal more rapidly. The scars that may be generated by EVL ulcers, make subsequent redevelopment of varices more difficult. After band ligation patients should start with liquids at room temperature for the first 12 h and then take soft foods gradually. A recent trial has shown that proton pump inhibitor therapy is associated with smaller ulcers but the total number and the symptoms were not different.

Varices are considered eradicated when they have either disappeared or cannot be sucked and banded by the ligator. Variceal eradication is obtained in about 90% of patients with up to 4 banding sessions but recurrence is not uncommon.

A meta-analysis of 7 randomized controlled trials (RCTs) showed that there is a tendency toward benefit of EVL compared to ES in terms of control of bleeding, recurrent bleeding, side effects, need for fewer endoscopic treatments, and survival. Therefore, EVL has become the treatment of choice for variceal bleeding but ES can be used when EVL is technically difficult.

Compared to ES, EVL has a higher frequency of recurrent varices but they can be treated with repeated EVL.

Minor complications of EVL, that respond well to oral analgesia and antacids, include chest pain and transient dysphagia. Serious, but rare, complications include massive bleeding from untimely sloughing of bands, esophageal perforation (mostly for the use of overtube), esophageal strictures and bacteremia even if with a lower frequency than with ES. Finally, there are reports that EVL may cause worsening of and/or appearance of PHG.

Combination Therapy

Vasoactive drugs and endoscopic therapy

Vasoactive drugs and endoscopic therapy. Combination of vasoactive drugs plus EVL/ES is the standard of care for variceal bleeding. In fact, a meta-analysis of 8 trials demonstrated that combined therapy (endoscopic plus vasoactive drugs) compared to endoscopic therapy alone (ES or EVL) improved control of bleeding and 5-day hemostasis without differences in severe side effects or mortality.

EVL plus ES

EVL plus ES. Some studies have been performed on the combination of EVL and ES in order to achieve variceal eradication more quickly and thus reduce the likelihood of rebleeding and the incidence of recurrent varices. A meta-analysis of 7 RCTs by Singh et al showed that combination therapy had no advantage over EVL alone in the control of bleeding varices, prevention of rebleeding or reducing mortality with a significant increase in esophageal strictures.

Failures of Endoscopic Therapy

Current guidelines define treatment failure a failure to control acute variceal bleeding within 24 hours, or failure to prevent clinically significant rebleeding or death within 5 days of treatment.
GASTRIC VARICEAL BLEEDING

Bleeding from gastric varices (GV) is less frequent but more severe than bleeding from EV\(^{[29]}\). The treatment of GV is more difficult than that of EV because of the torrential blood outflow and their treatment modality depends on their location in the stomach and relation with EV. The Sarin classification is most widely used\(^{[20,25]}\). Gastroesophageal varices type 1 (GOV1) are an extension of esophageal varices along the lesser curvature of the stomach and have the same behavior of EV as far as haemostasis and rebleeding is concerned and therefore should be treated as EV\(^{[86]}\). Gastroesophageal varices type 2 (GOV2) located in the fundus of the stomach have been treated with different endoscopic techniques including ES, EVL, obliteration with glue and thrombin injection.

ES

ES was shown to be ineffective and with a high rate of complications\(^{[87]}\), possibly because the high volume of blood flowing through GV may wash away the sclerosant.

Gastric varices obliteration

Gastric varices obliteration consist in the injection of a tissue adhesive (polymers of cyanoacrylate) into a varix; the tissue adhesive upon contact with blood immediately polymerizes obliterating the varix. Complications of this procedure are rare but may be severe (with a mortality rate 0.5%): rebleeding due to extrusion of the glue cast (4.4%), sepsis (1.3%), pulmonary, cerebral, or splenic emboli (0.7%), gastric ulcer formation (0.1%) and mesenteric hematoma associated with hemoperitoneum and bacterial peritonitis (0.1%)\(^{[88]}\). Gastric varices obliteration is effective for acute fundal GV bleeding as it allows a better control of bleeding and reduces the rate of rebleeding\(^{[87,89-91]}\) in comparison with alternative treatments. In the United States cyanoacrylate use is not approved by the Food and Drug Administration.

EVL

EVL was shown to be similar to cyanoacrylate in controlling active bleeding but with higher rebleeding rate\(^{[89]}\). Therefore, EVL is recommended as an alternative option, where tissue adhesives are not available\(^{[27]}\).

Intravariceal thrombin injection

Intravariceal thrombin injection was useful in achieving initial hemostasis in GV bleeding without significant side effects in preliminary studies\(^{[87,94-98]}\) but further evidence is needed before its use could be recommended in clinical practice.

In case of treatment failure of pharmacological and endoscopic therapy TIPS should be considered, sometimes associated with coil embolization of GV\(^{[17]}\).

The actual recommendation for the treatment of GV is to use tissue adhesive (e.g. N-butyl-cyanoacrylate) for acute bleeding from isolated gastric varices (IGV) and gastroesophageal varices type 2 (GOV2) that extend beyond the cardia; in acute bleeding from gastroesophageal varices type 1 (GOV1) EVL or tissue adhesive can be used\(^{[25,37]}\).

ECTOPIC VARICEAL BLEEDING

Portal hypertension may be responsible not only for the development and/or bleeding of esophageal and gastric varices but also of varices in other sites, e.g., in the duodenum, rectum and peristomal. Ectopic variceal bleeding is rare (less than 5% of portal-hypertensive related bleeding episodes) but mostly occurs from duodenal varices. No formal recommendation on their optimal treatment can be made because no clinical trials have been made. To date they are treated like EV or GV and the preferred treatment depends mainly on local expertise and location of the varices\(^{[89,99]}\).

ES

ES was shown to be effective in controlling bleeding from duodenal\(^{[108,109]}\), rectal\(^{[102,103]}\), and stomal varices\(^{[104,109]}\).

Ectopic varices obliteration

Ectopic varices obliteration. Cyanoacrylate glue injection has been successfully used to obliterate bleeding duodenal\(^{[106,107]}\), jejunal\(^{[108]}\), and rectal varices\(^{[109]}\).

EVL

EVL for bleeding duodenal varices is challenging because of limited visibility from the banding hood. It may be useful for temporary hemostasis but rebleeding is a problem\(^{[110,111]}\). However, several cases of successful treatment of rectal varices using EVL have been reported\(^{[112,113]}\).

RECOMMENDATIONS

Blood transfusion should be aimed at hemoglobin levels between 7-8 g/dL.
Definitive recommendations regarding management of coagulopathy and thrombocytopenia cannot be made on the basis of currently available data.

Antibiotic prophylaxis should be instituted from admission, oral quinolones for most patients considering intravenous ceftriaxone in patients with advanced cirrhosis, in hospital settings with high prevalence of quinolone-resistant bacterial infections and in patients on previous quinolone prophylaxis.

Vasoactive drugs (terlipressin, somatostatin, octreotide, vaperotide) should be started as soon as possible, even before endoscopy, and should be maintained for 2-5 days according to control of bleeding and can be stopped after 24 hours free from bleeding.

Vasoactive drugs should be used in combination with endoscopic therapy.

Emergency EGD may be at the same time diagnostic and therapeutic.

Esophageal variceal bleeding may be treated by endoscopic variceal ligation or endoscopic sclerotherapy.

Gastric variceal bleeding: Gastroesophageal varices type 1 (GOV1) should be treated as esophageal varices; Gastroesophageal varices type 2 (GOV2) should be treated with different endoscopic techniques including ES, EVL, obliteration with glue and thrombin injection.

Ectopic variceal bleeding: No formal recommendation on their optimal treatment can be made because no clinical trials have been made. To date they are treated like EV or GV and the preferred treatment depends mainly on local expertise and location of the varices.

TIPS should be used as an early treatment for high-risk patients or as a rescue therapy for patients who do not respond to endoscopic and drug therapy.

CONFLICT OF INTERESTS

The authors declare that they have no conflict of interests.

REFERENCES

report of the Baveno IV consensus workshop on methodology of diagnosis and therapy of portal hypertension. J Hepa-
tol 2005; 43: 167-176
41 Hubmann R, Bodlaj G, Czompo M, Benkő L, Pichler P, Al-
Kathib S, Kiblböck P, Shamyieh A, Biesenbach G. The use of self-expanding metal stents to treat acute esophageal varic-
al hemorrhage, Endoscopy 2006; 38(9): 896–901
42 Wright G, Lewis H, Hoğan B, A. Burroughs, D. Patch, J.
O’Beirne. A self-expanding metal stent for complicated varic-
al hemorrhage: experience at a single center. Gastrointest
Endosc 2010; 71(1): 71–78
43 de Franchis R, Pascal JP, Ancona E, Burroughs AK, Hen-
derson M, Fleig W, Groszmann R, Bosch J, Sauerbruch T,
Soederlund C. Definitions, methodology and therapeutic
strategies in portal hypertension. A Consensus Develop-
ment Workshop, Baveno, Lake Maggiore, Italy, April 5 and 6,
44 Crawford C, Frenckner P. New surgical treatment of varicose
veins of the esophagus. Acta Oto-Laryngologica 1939; 27:
422–429
45 Helmy A, Hayes PC. Review article: current endoscopic ther-
opanic options in the management of variceal bleeding.
Aliment Pharmacol Ther 2001; 15: 575-594
46 Villanueva C, Colomo A, Aracil C, Guarnier C. Current
endoscopic therapy of variceal bleeding. Best Pract Res Clin
Gastroenterol 2008; 22: 261-278
47 Park WG, Yeh RW, Triadafilopoulos G. Injection therapies
for variceal bleeding disorders of the GI tract. Gastrointest
Endosc 2008; 67: 313-323
48 de Franchis R, Primignani M. Endoscopic treatments for
49 Westaby D. Emergency and elective endoscopic therapy for
variceal haemorrhage. Baillieres Clin Gastroenterol 1992; 6:
465-480
50 Pushpanathan C, Idirko H. Pathological findings in the
esophagus after endoscopic sclerotherapy for variceal bleed-
51 Sarin SK, Nanda R, Sachdev G. Intravariceal versus paravar-
ciceal sclerotherapy: a prospective, controlled, randomised
52 Bhargava DK, Singh B, Dogra R, Dasarathy S, Sharma MP.
Prospective randomized comparison of sodium tetradecyl
sulfate and polidocanol as variceal sclerosing agents. Am J
Gastroenterol 1992; 87(2): 182-186
53 Akriavidis E, Korula J, Gupta S, Ko Y, Yamada S. Frequent
endoscopic varical sclerotherapy increases risk of compli-
cations. Prospective randomized controlled study of two
54 Sanowski RA, Waring JP. Endoscopic techniques and com-
9: 504-513
55 Schuman BM, Beckman JW, Tedesco FJ, Griffin JW Jr, Assad
RT. Complications of endoscopic injection sclerotherapy: a
review. Am J Gastroenterol 1987; 82: 823-830
56 Cohen LB, Korsten MA, Scherl EJ, Velez ME, Fisse RD, Ar-
ons EJ. Bacteremia after endoscopic injection sclerotherapy. Gas-
trointest Endosc 1983; 29: 198-206
57 Sarles HE, Sanowski RA, Talbert G. Course and complica-
tions of endoscopic varical sclerotherapy: a prospective
study of 50 patients. Am J Gastroenterol 1985; 80: 595-599
58 Haynes WC, Sanowski RA, Fouth PG, Bellaprapvalu S.
Esophageal strictures following endoscopic varical sclero-
therapy: clinical course and response to dilation therapy.
Gastrointest Endosc 1986; 32: 202-205
59 Baillie J, Yudelman P. Complications of endoscopic sclero-
60 Laine L, Cook D. Endoscopic ligation compared with sclero-
287
61 Lo GH. The role of endoscopy in secondary prophylaxis of
62 Lee JC, Lieberman DA. Complications related to endoscopic
63 Burroughs AK, McCormick PA. Prevention of variceal re-
64 Selby WS, Norton ID, Pokorny CS, Benn RA. Bacteremia
and bacterascites after endoscopic sclerotherapy for bleed-
ing esophageal varices and prevention by intravenous cefo-
684
65 Rolando N, Gimson A, Philpott-Howard J, Sahathevan M,
Casewell M, Fagan E, Westaby D, Williams R. Infectious se-
quelae after endoscopic sclerotherapy of oesophageal var-
66 Schuman BM, Beckman JW, Tedesco FJ, Griffin JW Jr, Assad
RT. Complications of endoscopic injection sclerotherapy: a
review. Am J Gastroenterol 1987; 82: 823–830
67 D’Amico G, Pagliaro L, Pietrosi G, Tarantino I. Emergency
sclerotherapy versus vasocative drugs for bleeding oesopha-
geal varices in cirrhotic patients. Cochrane Database of
Systematic Reviews 2010; 3: CD002233
68 Stiegmann GV, Goff JS, Sun JH, Davis D, Bozdech J. En-
doscopic variceal ligation: an alternative to sclerotherapy. Gas-
69 Stiegmann GV, Goff JS, Michaletz-Onody PA, Korula J,
Lieberman D, Saeed ZA, Revellie RM, Sun JH, Lowenstein
SR. Endoscopic sclerotherapy as compared with endoscopic
326: 1527–1532
70 Cárdenas A. Management of acute variceal bleeding: empha-
sis on endoscopic therapy. Clin Liver Dis 2010; 14: 251–262
71 Young MF, Sanowski RA, Rasce R. Comparison and char-
acterization of ulcerations induced by endoscopic ligation of
esophageal varices versus endoscopic sclerotherapy. Gastro-
intest Endosc 1993; 39: 119–122
72 Polski JM, Brunt EM, Saeed ZA. Chronology of histological
changes after band ligation of esophageal varices in hu-
73 Sabherwal RJ, Skowronski E, Schmitz SM, Mitchell KL, Fried MW,
Zacks S, Russo MW, Galanko J, Shrestha R. Pantoprazole
reduces the size of postbanding ulcers after variceal band
ligation: a randomized, controlled trial. Gastroscopy 2005; 41:
588-594
74 Bosch J, García-Pagán JC. Prevention of variceal rebleed-
ing. Lancet 2003; 361: 952-954
75 Hou MC, Lin HC, Kuo BI, Chen CH, Lee FY, Lee SD. Com-
parison of endoscopic variceal injection sclerotherapy and
ligation for the treatment of esophageal variceal hemor-
rhage: a prospective randomized trial. Gastroenterology 1995; 21:
1517-1522
76 Sarin SK, Govil A, Jain AK, Guptan RC, Issar SK, Jain M,
Murthy NS. Prospective randomized trial of endoscopic
sclerotherapy versus variceal band ligation for esophageal
varices: influence on gastropathy, gastric varices and vari-
cal recurrence. J Hepatol 1997; 26: 826-832
77 Hou MC, Lin HC, Lee FY, Chang FY, Lee SD. Recurrence of
esophageal varices following endoscopic treatment and its
impact on rebleeding: comparison of sclerotherapy and liga-
78 García-Pagán JC, Bosch J. Endoscopic band ligation in the
treatment of portal hypertension. Nature Clinical Practice
P, Merli M, Rodes J, Stiegmann GV. Complications in the
medical treatment of portal hypertension. Proceedings of the
third Baveno international consensus workshop on
definitions, methodology and therapeutic strategies. In: de
Franchis R, ed. Portal hypertension III. Oxford (UK): Black-
well Science; 2001: 180–201
80 Lo GH, Lai KH, Shen MT, Chang CF. A comparison of the
incidence of transient bacteremia and infectious sequelae
81 Pereira-Lima JC, Zanette M, Lopes CV, de Mattos AA. The
influence of endoscopic variceal ligation on the portal pres-
sure gradient in cirrhotics. Hepato-Gastroenterol 2003; 50(49):
102–106
82 de la Pena J, Rivero M, Sanchez E, Fábrega E, Crespo J,
Pons-Romero F. Variceal ligation compared with endo-
scopic sclerotherapy for variceal hemorrhage: a prospective,
83 Singh P, Pooran N, Indaram A, Bank S. Combined ligation
and sclerotherapy Versus Ligation alone for secondary pro-
phylaxis of esophageal variceal bleeding: a meta-analysis.
Am J Gastroenterol 2000; 97(3): 623–629
84 Saeed ZA, Michaletz PA, Winchester CB, Woods KL, Dixon
WB, Hieser MC, Gentry KR, Ramirez FC. Endoscopic vari-
ceval ligation in patients who have failed endoscopic sclero-
85 García-Pagan JC, Caca K, Bureau C, Lamale W, Appen-
rodt B, Luca A, Abraldes JC, Nevens F, Vinel JP, Mössner
J, Bosch J. Early TIPSS (Transjugular Intrahepatic Portosys-
temic Shunt) Cooperative Study Group. Early use of TIPSS
in patients with cirrhosis and variceal bleeding. NEJM 2010;
362: 2370–2379
86 Ryan BM, Stockbrugger RW, Ryan JM. A pathophysiol-
gic, gastroenterologic, and radiologic approach to the man-
agement of gastric varices. Gastroenterology 2004; 126(4):
1175–1189
87 Sarin SK, Mishra SR. Endoscopic therapy for gastric vari-
88 Cheng LF, Wang ZQ, Li CZ, Lin W, Yeo AE, Jin B. Low
incidence of complications from endoscopic gastric vari-
cel ligation with butyl cyanoacrylate. J Hepatol 2010; 53(4):
760–766
89 Tan JC, Hou MC, Lin HC, Liu TT, Lee FY, Chang FY, Lee
SD. A randomized trial of endoscopic treatment of acute gastri
cal variceal hemorrhage: N-butyl-2-cyanoacrylate injec-
90 Lo GH, Lai KH, Cheng JS, Chen MH, Chiang HT. A pros-
spective, randomized trial of butyl cyanoacrylate injection
91 D’Imperio N, Piemontese A, Baroncini D, Billi P, Borioni
D, Dal Monte PP, Borrello P. Evaluation of undiluted N-
butyl-2-cyanoacrylate in the endoscopic treatment of upper
92 Huang YH, Yeh HZ, Chen GH, Chang CS, Wu CY, Poon
YW, Lai ET, Tsang KH. Endoscopic treatment of bleeding
gastric varices by N-butyl-2-cyanoacrylate (Histoacryl)
injection: long-term efficacy and safety. Gastroenterology
93 Sarin SK, Jain AK, Jain M, Gupta R. A randomized con-
trolled trial of cyanoacrylate versus alcohol injection in pa-
ients with isolated fundic varices. Am J Gastroenterol 2002;
97(4): 1010–1015
94 Ramesh J, Limdi JK, Sharma V, Makin AJ. The use of
thrombin injections in the management of bleeding gastric

1513 © 2015 ACT. All rights reserved.

Peer reviewers: Li Yuyuan, Professor, Department of Gasteroenterology and Hepatology, Guangzhou First Municipal People’s Hospital, 1 Panfu Road, Guangzhou, China; Hamdy Sliem, Professor of internal medicine, faculty of medicine, Suez canal university, Ismailia, Egypt; Nasser Hamed Mousa, Associate Professor,Tropical Medicine and Hepatology, Mansoura University, Mansoura City, 35516/20, Egypt.