
Takayuki Fujita, JCHO Yokohama-chuo Hospital, Department of 
Nephrology, Hypertension and Endocrinology, Nihon University 
School of Medicine, Tokyo, Japan
Correspondence to: Takayuki Fujita MD PhD, Department of 
Nephrology, Hypertension and Endocrinology, Nihon University 
School of Medicine, 30-1 Oyaguchi-kamimachi Itabashiku, Tokyo, 
173-8610, Japan.
Email: tfujita@med.nihon-u.ac.jp
Telephone: + 81-3-3972-8111          Fax: + 81-3-3972-8311
Received: August 5, 2015                Revised: September 1, 2015
Accepted: September 5, 2015
Published online: December 29, 2015

ABSTRACT
Adipokine, the adipocyte-derived cytokine, plays a role in the estab-
lishment of vascular complications in patients with type 2 diabetes 
mellitus (T2DM). Adipokine, excreted from active adipocyte, contin-
uously accelerates insulin resistance and chronic inflammation pro-
cess in the pathophysiology of T2DM, resulting in the development 
of systemic macro-vascular injury, and may also promote atheroscle-
rosis and endothelial dysfunction of the micro-vascular wall. Leptin, 
tumor necrosis factor-alpha, interleukin-6, complement proteins, and 
adiponectin are known as adipokines in capable of several actions to 
both systemic macro-vessels and local micro-vessels in organ. In this 
review, these adipokines are high-lighted and discussed in the devel-
opment of diabetic renal complication.
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INTRODUCTION
Recentry, adipose tissue has been recognized as an endocrine organ 
which excretes fluid factors affecting glucose and lipid metabolism, 
blood pressure, and coagulation in addition with a preservation organ 
of the excessive energy[1]. Cytokines excreted from active adipocytes 
are called “adipokine,” which concentrates macrophage to activate, 
and induces insulin resistance, chronic inflammation, athrosclerosis, 
and endothelial dysfunction[2]. Insulin resistance, not to speak of 
oxidative stress and chronic inflammation, plays a central role in the 
diabetic pathophysiology, and may induce atherosclerosis and micro-
vascular endothelial dysfunction[3,4]. In this review, authors would 
discuss about the etiological effect of adipokines in the development 
of macro-vascular complications, and would examine the role of 
adipokines in the developement of diabetic micro-angiopathy. Insulin 
resistance in the peripheral artery is induced from the imbalance 
between nitric oxiside (NO) production via the phosphtidylinositol 
3-kinase (PI3K) pathway by over-stimulation of hyperinsulinemia 
and endothelin-1 excretion via the mitogen activated protein kinase 
(MAPK) pathway. PI3K-NO pathway is decreased and MAPK-
endothlin-1 pathway is accelerated in obese patients[5]. Oxidative 
stress is also known to be accelerated in patients with type 2 
diabetes mellitus. Persistent hyperinsulinemia and/or hyperglycemia 
would increase the production of reactive oxygen species (ROS) 
in mitochondria, resulting in the acceleration of oxidative stress[6]. 
Atherosclerosis and vascular endothelial dysfunction are known 
as promotive factors for diabetic microangiopathy. Previous 
evidences and perspectives on the direct effect of adipokines to 
the micro-vascular wall and organs are provided in addition with 
the systemic macro-vascular injuries such as insulin resistance and 
chronic inflammation. Leptin, tumor necrosis factor-alpha (TNF-α), 
interleukin-6 (IL-6), complement proteins, and adiponectin are taken 
up and discussed here (Figure 1).

LEPTIN
Leptin was identified as an etiological gene of obesity, and would 
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accelerate energy consumption and appetite regulation via its 
receptor at hypothalamus[7]. In obesity, excess eating with insulin 
resistance is recognized in spite of increased leptin excretion from 
adipocyte. This phenomenon is called as “leptin resistance,” and 
is induced by phosphorylation disturbance of signal tranducer and 
activator of transcription 3 (STAT3), and is also induced by passage 
disturbance of leptin through blood brain barrier[8]. It is reported that 
continuous hyperleptinemia itself would induce leptin resistance[9]. 
Leptin possesses high similarity with inflammatory cytokines and 
their receptors[10]. It is reported that plasma leptin level would 
correlate with that of CRP, and leptin would promote inflammation 
process[11]. Moreover, leptin is also reported to worse cachexia on 
uremic patients[12]. On the direct effect to peripheral micro-vascular 
wall, leptin is reported as a regulator against ischemia/reperfusion 
injury[13]. Leptin is also reported to correlate with arterial stiffness[14]. 
Leptin accelerates sympathetic nerve activity, induces hypertension, 
and promotes imbalance between endothelial NOS expression 
and intra-cellular L-arginine expression, resulting in endothelial 
dysfunction and the breakdown of micro-vascular tonus[15,16]. Leptin 
is known to induce the growth of cultured glomerular endothelial 
cells and to increase the production of transforming-growth-factor-
beta 1 (TGF-β1). Wolf G. et al. reported that infusion of recombinant 
leptin was able to induce TGF-β1 expression and to increase 
proliferating cells with an amplified glomerular expression of type 
IV collagen[17]. Leptin has been shown to induce the synthesis of 
type I collagen in mesangial cells, as well as type IV collagen in 
glomerular endothelial cells contributing to extracellular matrix 
deposition, glomerulosclerosis, and proteinuria[18]. It has been 
suggested that leptin induces oxidative stress responses, and increases 
TNF-α, IL-6, and potentiates proliferation, resulting in impaired 
endothelium-dependent vasodilation promoting hypertension and 
atherosclerosis[19]. 

TSTUMOR NECROSIS FACTOR-α  
TNF-α is derived from adipose tissue, and correlates with the 
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Figure 1 Cytokines derived from adipocyte. Obesity-activated adipocyte excretes several cytokines and chemokines called “adipokine.” They provide 
various functions in the pathophysiological condition, and play roles on endothelial dysfunction, resulting in the expression of diabetic vascular 
complications.

pathophysiologic state of insulin resistance and obesity[20]. TNF-α 
promotes serine phosphorylation of insulin receptor substrate-1 (IRS-
1) in adipocyte[21]. This procedure competes serine phosphorylation of 
insulin, and accelerates breakdown of IRS-1 resulting in the induction 
of insulin resistance[22]. TNF-α plays a pivotal role in the disruption of 
macrovascular and microvascular circulation. The increase in TNF-α 
expression induces the production of ROS, resulting in endothelial 
dysfunction in many pathophysiological conditions[23]. The direct 
effect of TNF-α on vascular endothelium has been recognized[24,25]. 
TNF-α and ROS would injure vascular endothelium and would 
increase urinary albumin excretion[26,27]. Macrophage infiltrates under 
the endothelium of peripheral micro-vessels, and excretes TNF-α 
which increases production of monocyte chemoattaractant protein-1 
(MCP-1). Awad AS. et al reported that blockade of TNF-α reduced 
albuminuria, serum creatinine histopathologic changes, kidney 
macrophage recruitment, and plasma inflammatory cytokine levels[28]. 
Adiponectin predominantly inhibits TNF-α excretion through nuclear 
factor-kappa B[29].

INTERLEUKINS
IL-6 is known as an inflammatory cytokine, which is ordinarily 
produced at T cell and macrophage. However, up to 30% of 
circulating IL-6 is thought to be derived from adipocyte. IL-6 
enfeebles tyrosine phosphorylation of IRS-1 on adipocyte, and induce 
insulin resistanc[30]. STAT-3, which is activated by IL-6, accelerates 
expression of suppressor of cytokine signaling-3 (SOCS-3). SOCS-3 
suppresses phosphorylation of IRS-1 by binding to ubiquitin, resulting 
in the induction of insulin resistance[31]. Pradhan et al. reported 
that plasma IL-6 level increased in case of obesity and/or insulin 
resistance[32]. IL-6 promotes endothelial activation by expressing 
MCP-1 and adhesion molecules that recruits immune cells into sub-
intimal space[33, 34]. Moreover, IL-6 activates macrophages to migrate 
and differentiate, which potentially accelerates atherogenesis[35]. IL-6 
would directly contribute to the process of tissue injury in glomerulus 
as a inflammatory cytokine[36]. 
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    Previously authors reported that interleukin 18 (IL-18) of 
interleukin family contributed to the expression of glomerular injury 
in T2DM patients[37]. IL-18 is produced by vascular endothelial cells 
or activated macrophages, and induces interferon-γ production[38]. 
IL-18 is therefore a marker of inflammation, and is a prognostic 
marker for forthcoming cardiovascular events[39]. In nephropathy, the 
activated macrophage infiltrates the glomerulus and produces IL-
18 in the course of kidney injury[40]. The increase of IL-18 suggests 
another mechanism of glomerular injury by the infiltrated and 
activated macrophage in addition to usual endothelial injury. IL-18 
from atheroma plaque plays a role on general vascular endothelial 
injury through the mild and continuous inflammation reaction. While 
macrophage infiltrated in the kidney excretes IL-18 and induces the 
glomerular injury in lupus nephritis and other primary glomerular 
diseases. So, IL-18 may also concern in the development of 
nephropathy in diabetes mellitus through the effect of macrophage-
induced IL-18. The inflammation reaction in glomerulus may 
occur more strongly than in arteriole. Previous reports indicate 
that TGF-β and IL-6 injure glomerular mesangial cells during the 
inflammation reaction[41, 42]. IL-18 has been reported to play a role in 
the formation of inflammation and endothelial dysfunction[43]. Tucci 
et al. reported that IL-18 induced the accumulation of dendritic cells 
in the glomerulus, resulting in kidney injury[44]. Araki et al. reported 
predictive impact of IL-18 on diabetic renal dysfunction in a follow-
up study[40]. Authors also indicated that IL-18 has a direct role in the 
acceleration of glomerular injury in addition to its proinflammatory 
effect. 

COMPLEMENT PROTEINS
Complement proteins are produced at adipocytes in addition 
with liver cells. Especially, serum components consisting of the 
alternative pathway are derived from the active adipocyte in 
excess[45]. Circulating C3 is slowly activated and brokendown to 
C3b and C3a under the existence of chylomicron[46]. On binding 
to C3a receptor (C3aR), C3a promotes insulin resistance at 
adipocyte, and accelerates inflammatory process at macrophage[47]. 
C3a is immediately inactivated to acylation stimulating protein 
in circulation, and promotes triglyceride synthesis on binding to 
C5L2 receptor at adipocyte[48]. C3b also activates C5 and serial late 
complement pathway, and membrane attack complex infiltrates 
to vessel wall to form atherosclerosis[49]. C5a also binds to C5a 
receptor to promote inflammation process in tissue and insulin 
resistance[50]. Complement components act as the adipokine 
in addition with ordinary immunological activities, and their 
circulating levels correlate to the risk of ischemic heart disease 
and diabetic nephropathy[51, 52]. The plasma C3 level is associated 
with the development of T2DM and several risk factors such as 
obesity, dyslipidemia, and insulin resistance[53,54]. The link between 
complement activation and metabolic syndrome is substantiated 
by the observations that adipose tissue secretes complement 
components. Several adipocyte-derived cytokines activate 
proinflammatory cytokines and act on macrophages, resulting in 
tissue injury in the diabetic kidney[55,56]. During the course of T2DM, 
the following pathophysiological states are often recognized in 
association with complement activation and renal involvement. van 
Greevenbroek et al[54]. reported that complement gene expression 
was up-regulated in patients with obesity and dyslipidemia. Such 
up-regulation may subsequently influence downstream processes, 
including macrophage infiltration into adipose tissue and adipocyte 
insulin resistance (Figure 2). 

ADIPONECTIN FAMILY
The expression of adiponectin is specific in adipocyte, and its 
circulating level correlates with the pathophysiological state of obesity 
and insulin resistance. Adiponectin emphasizes insulin action by 
activating peroxisome proliferator activated receptor alpha (PPARα) 
and 5' adenosine monophosphate- activated protein kinase (AMPK) 
activity[57], and regulates de novo glucose synthesis in liver[58]. 
Adiponectin promotes PI3K activity via IRS-1 signal pathway, and 
accelerates fatty acid consumption by increasing the development of 
fatty acid transport protein-1 on muscle cell[59]. The development of 
adiponectin is increased in the smaller adipocyte, and regulated in 
the expanded adipocyte due to obesity[60]. Tuchida et al. reported that 
circulating adiponectin as well as its receptor levels were decreased in 
obese patients[61]. Adiponectin was not recognized in normal intima, 
but was strongly recognized in the injured subendothelium[62]. This 
indicates that circulating adiponectin would infiltrate to the injured 
subendothelium. Adiponectin regulates TNFα-dependent increased 
expression of vascular cell adhesion molecule-1, intercellular 
adhesion molecule 1, and E-selectin on endothelium, and inhibits 
adhesion of monocytes to the vessel wall[63]. Adiponectin is reported 
to inhibit proliferation of vascular smooth muscle cell by several cell 
proliferation factor[64]. These evidences indicate the direct protective 
effect of adiponectin to local atherosclerosis. Ohashi et al. reported 
that adiponectin would act against the progression of renal injury[65]. 
    C1q/TNF-related protein-9 (CTRP9), a newly identified member 
of adiponectin family, was reported to act protectively to the ischemic 
heart[66]. CTRP9 activates AMPK, Akt and p42/44MAPK, and 
stimulation of muscle glucose uptake can contribute to reduce blood 
glucose[67]. CTRP9 induces vasodilation through the AMPK/eNOS 
pathway via nitric oxide production[68]. CTRP9 over-expression 
reduces neointimal formation by suppressing vascular smooth 
muscle cell proliferation and migration through the cAMP/PKA/
ERK pathway[69]. Therefore, obesity and insulin resistance are risk 
factors for renal vascular damage as well as cardio- vascular damage 

Figure 2 Differential roles of complement proteins in vascular injury.
In patients with T2DM with obesity, activated adipocytes overproduce 
complement components such as C3 and Factor B. Chylomicron activates 
the alternative complement pathway by regulating the effect of Factor H. 
During this process, C3 is spontaneously and continuously converted to 
C3a and C3b. C3b excites the terminal complement pathway and forms 
membrane attack complexes (MACs), which contribute to the formation 
of atherosclerotic plaque. C3a contributes to the induction of insulin 
resistance in adipocytes and macrophages, and inflammation in vascular 
endothelial cells. C3a is immediately converted to acylation stimulating 
protein (ASP), which leads to the induction of triacylglycerol production 
and obesity.
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in patients with type 2 diabetes. Like adiponectin, CTRP9 reduces 
myocardial infarct size and hypoxia-induced apoptosiss of cardio-
myocytes through AMPK signaling similarly to adiponectin[70]. Plasma 
adiponectin levels are inversely correlated with albumin in overweight 
individuals[71], but the relevance of CTRP9 levels in patients with type 
2 diabetes is not yet well understood (Figure 3).

Figure 3 Pivotal effects of adipokines in vascular endothelium. Full-
length adiponectin activates AMPK, cAMP-PKA, MAPK, and PI3K-Akt on 
binding to AdipoR2. Activation of cAMP-PKA/AMPK causes increased 
NO production, decreased ROS generation, and NFkB suppression 
leading to the reduction of IL-6. Ordinarily, globular adiponectin activates 
NFkB via AdipoR1/AMPK-Akt pathway. However, globular adiponectin 
oppositely improves endothelial dysfunction via activation of Akt-
AMP-eNOS pathway and suppression of endothelial ROS generation 
via inhibition of NFkB signaling in hyperglycemia and inflammation. 
Leptin leads to phosphorylate Ob-R/JAK2 complex on binding to OB-
Rb. Subsequently, PI3K/Akt-STAT3 cascade is activated, and induces 
atherogenic and inflammatory effects by the transcription of genes such as 
MCP-1, TNF-α, and IL-6. (AMPK: adenosine mono phosphate-activated 
protein kinase, cAMP-PKA: cyclic AMP-protein kinase A, MAPK: 
mitogen activated protein kinase, PI3K: phosphatidylinositol 3-kinase, 
Akt: protein kinase B, AdipoR2: adiponectin receptor 2, NO: Nitric 
oxide, eNOS: endothelial nitric oxide synthase, ROS: reactive oxygen 
species, NFkB: nuclear factor kappa B, IL-18: interleukin-18, AdipoR1: 
adiponectin receptor 1, NAD: nicotinamide adenine dinucleotide, SIRT-
1: NAD-dependent deacetylase sirtuin-1, PPARγ: peroxisome proliferator 
activated receptor gamma, PGC-1α: PPARγ coactivator-1 alpha, JAK: 
Janus kinase, OB-R: leptin receptor, IRS: insulin receptor substrate, 
STAT3: signal transducer and activator of transcription 3, MCP-1: 
monocyte chemoattractant protein-1, TNF-α: tumor necrosis factor-α, IL-6: 
interleukin-6).

CONCLUSION
Diabetic vascular complication develops in the pathophysiology of 
insulin resistance which is induced from systemic abnormal glucose/
lipid metabolism and in the pathophysiology of atherosclerosis which 
is induced from local vascular endothelial dysfunction. Adipokine, 
derived from active adipocyte in obesity, possesses these systemic 
and local action, and might play a role in the development of vascular 
injury and organ damage.
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