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ABSTRACT
The mTOR signaling plays a central role in the regulation of cell 
growth, proliferation, survival, apoptosis, and metabolism in response 
to mitogen, stress, energy, and nutrient signals as well as renal injury 
factors such as glucose, hemodynamic force, immune factors, toxins, 
and cancer causing agents. From cells to animal models, current data 
support that the dysregulation of mTOR signaling in renal cells leads 
to renal disease progression, including diabetic nephropathy, HIV-
associated nephropathy, IgA nephropathy, polycystic kidney diseases 
and renal cell carcinoma. Meanwhile, the inhibitors that attenuate 
mTOR signaling at the levels of receptor, kinase, phospholipase D 
or mTOR can slow or delay disease progression. In this review, we 
update our current knowledge of mTOR signaling network in renal 
disease and therapy.
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Abbreviations
ACEI: angiotensin-converting enzyme inhibitor; AMPK: AMP-
activated protein kinase; ARB: angiotensin receptor blocker; EGF: 
epidermal growth factor; EGFR: epidermal growth factor receptor; 
ESRD: end-stage renal disease; 4E-BP: eukaryotic translation initia-
tion factor-4E (eIF4E) binding proteins; FRB: FKBP12-rapamycin-
binding; GBM: glomerular basement membrane; HIF: hypoxia-
inducible factor; HIVAN: HIV-associated nephropathy; mTOR: 
mammalian target of rapamycin; mTORC: mTOR complex; PKD: 
polycystic kidney disease; PA: phosphatidic acid; PLD: phospholi-
pase D; RCC: renal cell carcinoma; Rheb: ras homolog enriched in 
brain; S6K: ribosomal S6 kinase; TSC: tuberous sclerosis complex.

INTRODUCTION
Chronic kidney disease represents a significant and growing public 
health problem and is recognized as a major global health burden[1,2]. 
During the past decades, the pathogenesis of chronic kidney disease 
has been intensely investigated[3-6]. Experiments in cell and animal 
models have accumulated a large amount of knowledge on the 
roles of glomeruli in chronic kidney diseases[6,7]. The major causes 
of chronic kidney diseases are sustained glomerular injury which 
is initiated by injury of glomerular podocytes and induced by 
numerous factors including high glucose, hemodynamics, infections 
and immunity, hereditary and metabolic diseases, and toxicity[1-7]. 
Meanwhile, the damage of other renal cells such as glomerular 
endothelial cells, mesangial cells and tubular epithelial cells also 
plays an important role in the progression of chronic kidney disease. 
These renal cells are regulated by different and multiple signaling 
pathways, and play specific roles to maintain kidney function. 
Therefore, understanding the alterations of signaling pathways that 
regulate renal cell functions in disease progression and disease 
state could lead to discover novel potential targets and to develop 
new therapeutic strategies. This brief review will focus on recent 
progresses in our understanding of the role of mammalian target of 
rapamycin (mTOR) signaling in renal disease and therapy.
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is accompanied by loss of the maturation markers synaptopodin 
and WT1, and expression of the proliferation marker Ki-67[17]. 
Dedifferentiated podocytes lose their characteristic features, lead to 
the destruction of glomerular filtration barrier integrity, reduce their 
adhesion, and promote podocyte detachment[16,17]. On the other hand, 
the most prominent response to HIV infection in human renal tubular 
epithelial cells is up-regulation of pro-inflammatory mediators 
which cause cell injury[16]. Both podocyte dedifferentiation and 
tubular epithelial cell injury lead to progressive renal insufficiency, 
proteinuria, and focal segmental glomerulosclerosis.
    IgA Nephropathy: The pathogenesis of IgA nephropathy is 
associated with several different renal cells. IgA1 binds to the 
glomerular mesangium, triggering the local production of cytokines 
and growth factors which lead to the activation of mesangial cells and 
proximal tubular epithelial cells. Mesangial-derived mediators lead 
to podocyte and tubulointerstitial injury. One of signs and symptoms 
of IgA nephropathy is high blood pressure. This hemodynamic force 
also causes podocyte injury, nephron loss and renal failure[18,19]. 
    Polycystic kidney disease: Polycystic kidney disease (PKD) is 
one of the most common life-threatening genetic diseases and is 
caused by a broad array of genetic mutations. Recent findings link 
cystogenesis in ciliary functions, planar cell polarity, and centrosome 
integrity in early disease development. The dysregulation of Ca2+ 
signaling leads to aberrant structure and function of the collecting 
ducts in the kidney, but the most important characteristics of PKD 
are the neoplastic-like epithelial cell proliferation and over-activation 
of epidermal growth factor/epidermal growth factor receptor (EGF/
EGFR) signaling[20-23]. High blood pressure is also the most common 
and noticeable sign of PKD. On the other hand, PKD cysts slowly 
replace and accumulate in the kidneys, reducing kidney function and 
leading to kidney failure. 
    Renal cell carcinoma: Renal cell carcinoma (RCC), the most 
common form (more than 90 %) of primary kidney tumors, arises 
from the convoluted tubules with the development of metastatic 
disease in the lung, bone, liver, and brain[24-26]. In the unstressed 
kidney, renal tubule epithelial cells which are maintained in G0-G1 
phase divide at a very low rate[27]. The new tubular epithelial cells 
only replace the loss of old tubular epithelial cells under physiological 
conditions. The turnover rate is under tight control as even a small 
imbalance between cell loss and cell division would soon lead to the 
significant changes of kidney size over time. Upon tumorigenesis, 
the tubular epithelial cells reenter the cell cycle, produce high levels 
of Cyclin D and A, cycline-dependent kinase 2 and 4, and proliferate 
out of control[24-28]. Enhanced cell proliferation occurs in every form 
of RCC and different stages of renal tumorigenesis[24-26]. 
    Although different renal cells play different roles in the regulation 
of kidney function and different renal diseases are caused by 
different reasons, the progression of different renal diseases are 
always associated with either renal cell apoptosis or uncontrolled 
proliferation. More and more studies indicate that mTOR signaling 
plays an important role in the regulation of cell growth, proliferation 
and apoptosis, and is involved in the progression of different renal 
diseases[29-31]. It is important to understand the regulation of mTOR 
signaling in renal cells and the association with renal disease 
progression. 

mTOR SIGNALING
   The mTOR signaling plays a central role in the regulation of cell 
growth (cell size and proliferation), stress response (apoptosis, 
autophagy, and necroptosis) and cell metabolism (nutrients and 
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RENAL CELL BIOLOGY
The functioning unit of the kidney is the nephron including the 
glomerulus and the tubule[8]. The glomerulus is a highly specialized 
structure that is the site of plasma ultrafiltration. The glomerular 
endothelium sits on a 250-300 nm thick glomerular membrane 
which is the basal lamina layer of the glomerulus and composed 
of glomerular endothelial cells, glomerular basement membrane 
(GBM), and glomerular epithelial cells (podocytes). The interstitium 
between endothelial cells of the glomerulus is mesangial cells. 
Glomerular podocytes are terminally differentiated cells, consisting 
of a cell body, major processes and foot processes interlinked by slit 
diaphragms. They play a central role in maintaining the filtration 
barrier of the glomerulus[8-10]. The endothelial cells of the glomerulus 
are highly fenestrated and contain numerous 60-80 nm pores that 
go through the cytoplasm[10]. They are also a significant part of the 
glomerular filtration barrier. Mesangial cells are specialized smooth 
muscle cells around blood vessels in the kidneys, and usually divided 
into two types: extraglomerular and intraglomerular mesangial 
cells. Intraglomerular mesangial cells provide structural support for 
glomerulus and regulate blood flow of the glomerular capillaries by 
their contractile activity[10]. The tubule plays a role in the maintenance 
of fluid and electrolyte composition of our body by reabsorption and 
secretion, and produces urine. Renal tubular epithelial cells lining the 
tubule establish the polarity of the epithelial plasma membrane which 
restricts the apical-basolateral diffusion of membrane components[11]. 
Injury or uncontrolled proliferation of renal cells are the key 
excretory processes leading to kidney dysfunction and renal disease 
progression

RENAL DISEASE PROGRESSION
Diabetic nephropathy: Diabetic nephropathy is clinically 
characterized by proteinuria, glomerular hypertrophy and GBM 
thickening with foot process effacement and is the single most 
common cause of end-stage renal disease (ESRD). High glucose in 
the blood accelerates glucose uptake, leads to a high metabolic rate 
and significant succinate accumulation in the mitochondria, cytosol 
and interstitium, and activates the renin angiotensin system that 
regulates body fluid balance and blood pressure[12,13]. The increases 
of blood pressure and local growth factors such as angiotensin II 
and transforming growth factor β, induce podocyte injury[4-7,12-14]. 
These podocytes become thinner and more elongated, and ultimately 
cell hypertrophy, foot process effacement, cell body attenuation, 
pseudocyst formation, cytoplasmic overload with reabsorption 
droplets, and detachment from the GBM, which finally leads to 
structural changes such as loss of nephron and results in loss of 
barrier function for macromolecules leading to proteinuria and 
ESRD[12-14]. Recent studies show that the alteration of the glomerular 
endothelial cell surface layer and the communication between 
glomerular endothelial cells and mesangial cells, or glomerular 
endothelial cells and podocytes also play an important role in the 
development and progression of diabetic nephropathy[15].
    HIV-associated nephropathy: Human immunodeficiency virus 
(HIV) infection is associated with collapsing focal segmental 
glomerulosclerosis- a classic histomorphological form of HIV-
associated nephropathy (HIVAN) and immune complex-mediated 
forms of glomerulonephritis[16]. The mechanisms responsible for 
HIVAN are initiated by HIV infection of podocytes and tubular 
epithelial cells. Glomerular podocytes in HIV-infected patients 
undergo dedifferentiation and acquire a proliferative phenotype which 



of extracellular signals including hormones, growth factors, 
neurotransmitters, cancer-causing agents, and bioactive lipids as 
well as the factors that can induce podocyte injury. PLD activation 
is regulated by multiple signaling pathways via tyrosine kinase 
receptors, G protein coupled receptors and others that act through 
Arf, Rho, Ral, PKC, ERK, p38MAPK, PI3K, Pyk2 and Src[71-74]. 
Many of these signaling pathways may be independent to TSC2/
Rheb/PLD pathway. PA can also be produced by diacylglycerol 
kinase (DGK) which is regulated by ionic detergents, phospholipids 
(PIP2 and PIP3) and many enzymes such as PKC, Src, and mTOR 
(Figure 1 green box)[75,76]. Based on PA binding to mTOR[32-35,48,49], 
signaling pathways that regulate PA production are associated with 
the activation of mTOR signaling. 

THE ROLE OF mTOR S IGNALING IN 
PROGRESSIVE RENAL DISEASES
The role of mTOR signaling in the physiological condition links to 
development and autophagy regulation in the kidney. The mTOR 
integrates signals to coordinate cell growth (mass and size) and cell 
cycle progression with sufficiency of nutrients, energy, and growth 
factors during kidney development and recovery, and is also a key 
player in the regulation of autophagy activity by stimulating cellular 
catabolism and anabolism in the response to kidney nutrients and 
growth factors[53,54]. Recently, a growing body of evidence suggests 
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energy balance), and can be activated in response to nutrients, growth 
factors, stress, and cellular energy[29-38]. The mTOR protein is a highly 
conserved 289 kDa serine/threonine kinase which nucleates at least 
two distinct multi-protein complexes: mTOR complex 1 (mTORC1) 
and mTOR complex 2 (mTORC2)[32-34]. In addition to mTOR, 
both complexes contain the small adaptors: deptor (DEP domain-
containing mTOR-interacting protein) and mLST8 (mammalian 
lethal with SEC13 protein 8)/GβL (G protein β subunit-like protein), 
and the defined adaptors: raptor (regulatory-associated protein of 
mTOR) for mTORC1 and rictor (rapamycin-insensitive companion of 
mTOR) for mTORC2. Two well characterized effectors of mTORC1 
are ribosomal S6 kinase (S6K), and the eukaryotic translation 
initiation factor-4E (eIF4E) binding proteins (4E-BP), which regulate 
mRNA translation (Figure 1)[37]. Both S6K and 4E-BP are recruited 
by the raptor to mTORC1 for phosphorylation[38]. By phosphorylation 
of S6K and 4E-BP1, mTORC1 activates the translation of key 
proteins such as hypoxia-inducible factor (HIF) and cyclin D and 
regulates gene translation to modulate cell growth, proliferation, 
differentiation, death, metabolism, and energy balance[32-38]. Like 
mTORC1, mTORC2 phosphorylates SGK1, Akt, and PKCα, 
activates Rho GTPases, and regulates cytoskeletal organization, 
metabolism, proliferation, and survival[39-45]. Recent data also indicate 
that mTORC2 regulates cell motility via focal adhesion proteins and 
actin cytoskeleton[39, 40,46]. 

PHOSPHATIDIC ACID, RAPAMYCIN AND 
mTOR
Both phosphatidic acid (PA) and rapamycin can directly bind to 
mTOR. They are positive and negative regulators of mTOR[39,40,47]. 
By analyzing NMR structure, Veverka et al reported that the phospho 
group of PA interacts with Arg2109 in FRB (FKBP12-rapamycin-
binding) domain of mTOR[48]. PA binds to FRB domain of mTOR 
in a manner that is competitive with rapamycin-FKBP12[49] and 
activates either mTORC1 or mTORC2 in the cells[32-35]. Rapamycin 
binds to FKBP12 (a 12 kDa FK506-binding protein), and the 
complex specifically binds to FRB domain of mTOR, and inhibits 
mTORC1 activation by preventing the interaction of mTOR with 
raptor, but does not bind to preformed mTORC2 (Figure 1, red box)
[39,40]. One recent report showed that prolonged rapamycin treatment 
also inhibit the interaction of mTORC2 and rictor in some cell lines, 
and further attenuate Akt activity[50]. 
    Tuberous sclerosis complex (TSC) plays an important role in 
the regulation of mTOR signaling via activating phospholipase D 
(PLD) and generating PA[51-53]. TSC consists of hamartin (TSC1) 
and tuberin (TSC2), and is an autosomal disorder that causes 
significant complications in multiple organs such as kidney, brain, 
heart, and lung[51,54]. Under the normal condition, TSC1 binds to 
TSC2, and forms a functional complex. TSC2 serves as a GTPase 
regulator for ras homolog enriched in brain (Rheb, a ras-related 
small GTPase) and the active form of Rheb (Rheb-GTP) stimulates 
PLD activity[55-58]. The activation of AMP-activated protein kinase 
(AMPK, an energy- and nutrient-sensing kinases) leads to increased 
phosphorylation of TSC2 at S1345, S1387 and T1227 that results in 
Rheb-GTP hydrolysis and inactivate Rheb (Rheb-GDP form)[59,60]. 
The inactive TSC2 which is phosphorylated by Akt at T1462 and 
S939 allows Rheb at GTP form to activate PLD and produce PA[61-

64]. Other protein kinases such as ERK, S6K, GSK-3, PKC, and p38-
MK2 kinase also phosphorylate TSC2 at specific sites to regulate 
mTOR activity (Figure 1, blue box)[65-70].
    PA is generated by PLD which can be stimulated by a variety 
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Figure 1 The mTOR signaling network. Extracellular signals such 
as hormones, growth factors, glucose, hemodynamic force, immune 
response, toxin and cancer causing agents, stimulate different kinases 
via different signaling pathways in renal cells. These kinases modulate 
downstream signaling via TSC2/Rheb-dependent and independent 
pathways to activate phospholipase D and further regulate mTOR 
activation. The mTOR regulates cell growth, proliferation, hypertrophy, 
and apoptosis which lead to the progression of different renal diseases. 
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ERK, extracellular-signal-regulated kinases; 4E-BP, eukaryotic translation 
initiation factor-4E (eIF4E) binding proteins; GSK, glycogen synthase 
kinase; mTOR, mammalian target of rapamycin; mTORC, mTOR complex; 
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PLD, phospholipase D; Rheb, ras homolog enriched in brain; S6K, 
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that mTOR plays a crucial role in renal disease progression[29-35]. 
    Diabetic nephropathy: A sustained exposure of high glucose results 
in diabetic nephropathy[7]. High glucose milieu up-regulates expression 
of matrix proteins leading to glomerular matrix accumulation and 
thickening of the GBM and induces the hypertrophy of glomerular 
podocytes, mesangial cells, and proximal tubular epithelial cells 
resulting in apoptosis, albuminuria, and glomerulosclerosis[5-7]. 
Evidence from different laboratories has demonstrated that high 
glucose stimulates PLD activity[77,78] and enhances mTOR activation 
and morphological changes[79-81]. Direct evidence from mice with 
TSC1 deletion specifically in podocytes recapitulates many features 
of diabetic nephropathy, including podocyte loss, GBM thickening, 
mesangial expansion, and proteinuria[82]. The partially TSC2(+/-
)-deficient diabetic rats significantly increase the kidney mass[83]. 
Genetic deletion of raptor (mTORC1) in mouse podocytes induces 
proteinuria and progressive glomerulosclerosis, while simultaneous 
deletion of both raptor and rictor (mTORC2) from mouse podocytes 
aggravates the glomerular lesions, revealing the importance of both 
mTOR complexes for podocyte homeostasis (podocyte development 
and podocyte maintenance)[84]. Deletion of S6K 1 inhibits renal 
hypertrophy following either contralateral nephrectomy or induction of 
diabetes[85]. 4E-BP1 knockout mice have not been used to address the 
important of 4E-BP1 in hypertrophic renal growth[86]. Taken together, 
these genetic data support that mTOR signaling plays an important 
role in the progression of diabetic nephropathy. 
    HIV-associated nephropathy: The mTOR regulates cell growth 
and proliferation by promoting the biosynthesis of proteins, lipids 
and nucleic acids. HIV-infection enhances the biosynthesis of DNA 
and protein. Increased extracellular matrix synthesis leads to GBM 
thickening and mesangial expansion. Increased proliferation of 
glomerular podocyte cells occurs with loss of maturation markers 
(synaptopodin and WT1) and the destruction of glomerular filtration 
barrier integrity and tubular cells that lead to the significant changes 
in kidney size[30,31,34,69,70]. So far, there is no genetic evidence 
linking mTOR signaling components to HIVAN, however, the 
phosphorylation of mTOR is significantly increased in both 
glomerular and tubular epithelial cells of HIV-1 transgenic mice and 
HIVAN patients, and the renal tissues of transgenic mice enhance 
the phosphorylation of p70S6 kinase and 4E-BP1[87,88]. On the other 
hand, rapamycin can attenuate the progression of glomerular and 
tubular lesions in Tg26 mice[89]. Epithelial mesenchymal transition of 
renal cells has been demonstrated to contribute to the pathogenesis 
of proliferative HIVAN[90]. Recent studies have found that abnormal 
mTORC1 activation also causes alteration of slit diaphragm protein 
distribution and induces an epithelial-mesenchymal transition-like 
phenotypic switch with enhanced endoplasmic reticulum stress in 
podocytes[82].
    IgA nephropathy and PKD: Most of IgA nephropathy presents 
with progressive mesangioproliferative glomerulosclerosis and 
causes ESRD within 20 years of onset[91]. ERK activation through 
mesangial IgA1 receptor (CD71) controls pro-inflammatory 
cytokine secretion and alters mesangial cell-podocyte crosstalk[92]. 
Rapamycin can attenuate the progression of mesangioproliferative 
glomerulosclerosis, prevent an additional increase in proteinuria and 
protect kidney function in a rat IgA nephropathy model induced by 
injection of high dose anti-thy1 antibody[91,92]. Many PKD patients 
have a large deletion of chromosome 16 encompassed by both the 
PKD1 gene and the adjacent TSC2 gene[20-23]. Using a PKD mouse 
model created by knocking out TSC1 in a subset of renal tubular 
cells, one recent study reported that extensive renal cyst formation in 
these mice is accompanied by broadly elevated mTORC1 activity[93]. 

It is clear that cyst development requires mTORC1 activation and can 
be blocked by low dosage of rapamycin administration[93,94].
    RCC and others: The mTOR signaling promoting cell 
proliferation under energy or nutrient-rich conditions is dysregulated 
in many cancers, including RCC[33-35]. The activation of mTOR 
correlates with aggressive behavior and poor prognosis in RCC and 
the inhibition of mTOR signaling by rapamycin and its analogs shows 
promising efficacy against RCC[95-97]. One recent study demonstrated 
that activation of mTORC2 up-regulates E-cadherin expression 
and promotes cell motility during HIF-2α down-regulation in renal 
carcinoma cells[98]. 
    High blood pressure is one of signs and symptoms of diabetic 
nephropathy, IgA nephropathy and PKD. We and others 
recently demonstrated that mechanical forces can induce mTOR 
activation[99-102], and the activation of mTOR leads to podocyte 
apoptosis[28-36]. Kusma et al[103] reported that the nephrotoxicity 
caused by brown spider venom leads to glomerular foot process 
effacement and cell detachment via a PLD-dependent action. This 
suggests that mTOR is also involved in the repair and recovery of 
renal function after acute kidney injury caused by acute toxic factors. 
The decrease in phosphatidylcholine and the increase in serum free 
choline in chronic hemodialysis patients and ESRD patients could 
be associated with PLD action in renal disease progression[104-107]. 
There are convincing data that the renin-angiotensin system is a 
major mediator of renal injury[108-111]. Angiotensin II stimulates PLD 
activity in the activation of mTOR signaling in different renal cells 
and plays a central role in glomerular hemodynamic adaptation and 
injury[112-116]. Taken together, the dysregulation of mTOR signaling is 
associated with renal disease progression.

mTOR SIGNALING AND THERAPEUTIC 
IMPLICATIONS
Given the accumulated knowledge that mTOR signaling promotes 
cell proliferation and regulates apoptosis, mTOR has emerged as an 
attractive therapeutic target for treatment of different renal diseases, 
including diabetic nephropathy, HIVAN, IgA nephropathy, PKD, 
acute kidney injury, and RCC[29-34]. A number of clinically important 
drugs appear to be effective because of the inhibition of mTOR 
signaling. Meanwhile, some new agents which can inhibit different 
components in mTOR signaling are potential therapeutic drugs for 
renal diseases (Table 1). 
    Rapamycin and its analogs: The inhibition of the mTOR activity 
by rapamycin can reduce podocyte injury[117], attenuates unilateral 
ureteral obstruction-induced renal fibrosis[118] and slows progression 
of diabetic nephropathy[82,84], HIVAN[119,120], IgA nephropathy[121] and 
PKD[122-128]. Rapamycin also attenuates both glomerular and tubular 

Targets
Receptor/
Sensor

Kinase

PLD

mTOR

Table 1 Agents that inhibit mTOR signaling in renal disease models.
Agents
Angiotensin-converting enzyme inhibitor, 
tolvaptan, octreotide, lanreotide, pasireotide
Metformin, tivozanib, dovitinib, erlotinib, 
lapatinib, cabozantinib, tivantinib, sunitinib, 
dasatinib, pazopanib, sorafenib, regorafenib, 
vemurafenib
NOPT, NBOD, RBPC, FIPI, VU0359595, 
VU0364739
Rapamycin, temsirolimus, everolimus, 
r idaforolimus, Ku0063794, MLN0128 
(INK128)

Renal disease
hypertension, 
DN

RCC, PKD, 
HIVAN

DN, PKD,  
HIVAN, RCC
DN, HIVAN, 
IgAN, PKD, 
RCC, AKI

*DN: diabetic nephropathy; IgAN: IgA nephropathy and AKI, acute 
kidney injury.
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infection are associated with angiotensin II-induced podocyte 
injury[141-143]. The effects of Angiotensin II are mediated through 
the angiotensin receptor to stimulate PLD activity and generate PA 
which could activate mTOR[109-113,134], and plays an important role 
in the pathogenesis of renal injury[108,109]. Angiotensin-converting 
enzyme inhibitor (ACEI) is a primary drug used for the treatment 
of hypertension and congestive heart failure. Several animal models 
and clinical trials have clearly demonstrated the effectiveness of 
ACEI therapy to improve glomerular/tubulointerstitial damage, 
reduce proteinuria, and decrease the progression of chronic kidney 
disease[145-147]. In rat PKD model, tolvaptan (a vasopressin V2 
receptor antagonist) and rapamycin caused a similar significant 
reduction in cyst volume density[148]. Tolvaptan delays the increase 
in total kidney volume, slows the decline in renal function, reduces 
kidney pain, and has been demonstrated in the pharmacologic, 
preclinical, and phase II and III clinical trial studies[149]. Somatostatin 
analogues (octreotide, lanreotide, pasireotide) and others are also 
used therapeutically by alteration of receptor binding, kinase activity 
and mTOR signaling[125,128]. 

CONCLUSIONS AND PROSPECTIVE
The progression of renal disease is very complex and is regulated 
by a complex signaling network in different renal cells. The mTOR 
lies at the center of this signaling network and regulates many 
fundamental cell processes in glomerulus and tubule, including 
renal cell growth, proliferation, autophagy, and apoptosis. The 
mTOR signaling network responds to extracellular signaling such as 
hormones, growth factors, glucose, hemodynamic, immune factors, 
toxins, cancer causing agents and alteration of energy and nutrient, 
and leads to regulation of downstream metabolic pathways. In many 
renal diseases, the current data support the concept that alteration of 
mTOR activity could turn renal cells from physiological functions 
into disease-driving progression. This provides an important 
theoretical basis for mTOR as a therapeutic target for treatment of 
renal diseases. Given the complex of mTOR signaling network, we 
need further insight into the regulation of mTOR signaling, identify 
the key modulators in different renal cells as novel target(s) for 
pharmacologic consideration, develop precise, specific and effective 
drugs for renal diseases, and search new therapeutic strategies for 
patients with renal disease.
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