ABSTRACT
Heart Failure is the result of heterogeneous structural heart diseases, especially ischemic disease, and is becoming increasingly common in all Western countries. Many patients continue to be symptomatic in spite of progress in pharmacological therapy, and the risk of mortality remains high in the most advanced functional classes. Cardiac resynchronization therapy can be used as a therapeutic strategy for alleviating symptoms and reducing mortality in a considerable percentage of patients with heart failure. Cardiac resynchronization therapy provides both immediate and medium/long-term results. The immediate results are the reduced QRS duration, the synchrony restoration between the ventricles and between the lateral and septal walls of the left ventricle, the reduced mitral regurgitation and the increased stroke volume. In the medium/long term, left ventricular reverse remodeling occurs and left ventricular ejection fraction is increased. Several trials have documented both increased functional capacity and improvements in quality of life and New York Heart Association class. Moreover, cardiac resynchronization therapy has been seen to reduce HF hospitalizations and mortality and the total number of days of hospitalization. In order to reduce the percentage of non-responders to cardiac resynchronization therapy, it is necessary to optimize the prognostic stratification of candidates for implantation through multi-parameter evaluations and to ensure correct device programming with periodic updates which are widely recommended but not so often performed. Whether indications should be extended will need to be evaluated in view of the known complications mainly associated with lead implantation.

© 2014 ACT. All rights reserved.

Key words: Cardiac resynchronization therapy; Heart failure

INTRODUCTION
Heart Failure (HF) is the result of heterogeneous structural heart diseases, especially ischemic disease, and is becoming increasingly common in all Western countries. Indeed, over than 7 million individuals in Europe[1] and over than 4 million in the United States[2] are currently affected. Moreover, this prevalence is expected to double over the next 20 years[3], thus making HF the new cardiovascular epidemic[4].

Since 1986, numerous clinical trials focused on HF therapy have been conducted, ranging from the simple control of risk factors to the implementation of advanced treatment modalities for patients with HF refractory to conventional therapy[5].

However, many patients continue to be symptomatic in spite of progress in pharmacological therapy, and the risk of mortality remains high in the most advanced functional classes[6]. Cardiac resynchronization therapy (CRT) can be used as a therapeutic strategy for alleviating symptoms and reducing mortality in a considerable percentage of HF patients.

RATIONALE
It is well known that QRS duration is inversely correlated with survival in HF patients in functional classes II-IV, and patients with QRS ≥200 ms have a 5-fold higher risk of death than those with...
a narrow QRS[11]. In particular, left bundle branch block (LBBB)
usually delays activation of the posterior/lateral wall of the left
ventricle, leading to asynchronous contraction between the septum
and posterior-lateral wall and reducing the left ventricular ejection
fraction (LVEF).

CRT can correct this asynchronous contraction through the pre-
extcitation of the posterior-lateral wall of the left ventricle, thereby
improving systolic function[12]. Indeed, the dysynchrony due to
prolonged QRS duration involves the heterogeneous propagation of
electrical activity in the ventricle, which determines various degrees
of impaired coordination in filling and contraction[10]. Consequently
the contractile efficiency of the heart is compromised and the
myocardial oxygen consumption increases, worsening the clinical
course of HF.

It is therefore important to consider that 1/3 of HF patients
have a QRS duration >120 ms[11], and that the incidence of LBBB
is 10.9% in the first year of follow-up[12]. In these patients, CRT
enables synchronous stimulation of both ventricles, which reduces
QRS duration and improves left ventricular systolic performance,
although modestly increasing the myocardial oxygen consumption[10].
The beneficial effects of CRT on left ventricular systolic function
and on neurohormonal activation lead to clinical improvements in
symptoms, exercise capability and quality of life, and reduce HF
hospitalizations and mortality[10].

RESULTS

CRT provides both immediate and medium/long-term results. The
immediate results are the reduced QRS duration, the synchrony
restoration between the ventricles and between the lateral and septal
walls of the left ventricle, the reduced mitral regurgitation and the
increased stroke volume. In the medium/long term, left ventricular
reverse remodeling occurs, left ventricular end-systolic volume
(LVEsV) is reduced by at least 15% and LVEF is increased by a
minimum of 5%.

On the clinical side, several trials have documented both increased
functional capacity, as evaluated by means of the 6-minute walking
test and the VO2 peak, and improvements in quality of life and New
York Heart Association (NYHA) class[13-21]. Moreover, CRT has been
seen to reduce HF hospitalizations and mortality by 36%[21], and the
total number of days of hospitalization by 77%[17]. The COMPANION
study[21] evaluated the efficacy of CRT, with or without an
Implantable Cardioverter Defibrillator (ICD), versus medical
therapy alone, in reducing the risk of death and hospitalizations in
HF patients. In 1,520 patients with advanced HF (LVEF ≤35%,
left ventricular end-diastolic diameter (LVEDD) ≥60 mm, NYHA
class III-IV) and intraventricular conduction delay (QRS ≥120 ms),
both CRT with and without ICD reduced the primary end-point of
mortality/hospitalization for HF by 20% in one year compared with
optimal medical therapy. It was clearly demonstrated that CRT in
addition to optimal medical therapy with beta-blockers[24,25], ACE-
inhibitors[24,25] and mineralocorticoid antagonists[18], further reduced
mortality in HF patients, and that this reduction reached a value of
36% in the long term[21].

The CARE-HF study[23] evaluated the effect of CRT on morbidity
and mortality in 813 patients with advanced HF and a clinical and
instrumental profile similar to that of the COMPANION study
population. The primary end-point was the combination of all-cause
death and hospitalization for major cardiovascular events over a mean
follow-up of 29.4 months. In this study, CRT reduced the primary
end-point by 37% compared with medical therapy (HR 0.63, 95%
CI 0.51-0.77, P<0.0001) in subgroups that showed no statistically
significant differences.

These exciting results led to further studies in which the benefits
of CRT have been assessed in patients in lower functional classes.
Specifically, in the REVERSE study[26,27] the long-term benefits of CRT
were evaluated in 610 European patients in NYHA class II (83%)
or I (previously symptomatic), with QRS ≥120 ms, LVEF ≤40%,
LVEdD ≥55 mm, with or without indication for an ICD, and
undergoing optimized medical therapy. Patients were randomized
2:1 to CRT-ON or CRT-OFF and followed up prospectively for 24
months. The end-points of the study were the combined clinical
score of all-cause mortality, hospitalizations for HF, cross-over
due to worsening HF and NYHA class, and LVEsV reduction.
Echocardiography revealed a significant improvement in LVEsV, left
ventricular end-diastolic volume (LVEDV) and LVEF (69.7 vs 94.5
mL/m², 103 vs 132 mL/m², 34.8% vs 29.9%, CRT-ON vs CRT-OFF,
respectively). Clinically, a significant 62% reduction was reported in
mortality and hospitalizations for HF at 24 months (11.7% vs 24%,
HR 0.38, 95% CI 0.20-0.73, P=0.003, CRT-ON vs CRT-OFF).

Similarly, the MADIT-CRT study[31] enrolled 1,820 patients in
NYHA class I or II (85%) and with QRS ≥130 ms and LVEF
≤30%. Patients were randomized 3:2 to CRT with ICD or ICD
alone and followed up for a mean of 2.4 years. The end-point of
the study was the reduction in all-cause mortality and/or hospitalizations
for HF. CRT with ICD showed a significant advantage over ICD
alone with regard to the primary end-point (17.2% vs 25.3%, HR
0.66, 95% CI 0.52-0.84, P=0.001), the reduction in left ventricular volume
(LVEsV -57 mL vs -18 mL, LVEDV -52 mL vs -15 mL, P<0.01, CRT
with ICD vs ICD alone, respectively) and the increase in LVEF (+11% vs
+3%, P<0.001, CRT with ICD vs ICD alone). The MADIT-CRT
results were largely confirmed by the RAFT study[34], which enrolled
1798 HF patients in NYHA class II (80%) and III, with QRS ≥130
ms, LVEF ≤30%, randomized to CRT with ICD or ICD alone and
followed up for 40 months. The reduction in the primary end-point
of all-cause mortality/hospitalizations for HF was 25% greater in the
CRT with ICD group than in the ICD alone group (HR 0.75, 95%
CI 0.64-0.87, P<0.001), with 29% reduction of the risk of mortality
in the sub-group of patients in NYHA class II. The results of these
three studies (REVERSE, MADIT-CRT and RAFT) encouraged CRT
indications to be extended to all NYHA class II patients. Moreover,
a recent meta-analysis of 5 randomized studies has shown that CRT
provides greater benefits in patients with QRS >150 ms[32].

GUIDELINES

On the basis of the evidences collected, the main American and
European scientific societies have modified CRT indications in the
aim to include patients not only in NYHA classes III and IV, but
also in NYHA class II with LBBB, in particular if with QRS ≥130
ms[33,34]. The benefit of CRT in patients in sinus rhythm with wide
QRS but without LBBB is uncertain. In these patients, the indication
for CRT is therefore less prescriptive.

Furthermore, in HF patients in permanent atrial fibrillation with
wide QRS and left ventricular dysfunction, CRT is indicated only in
an advanced NYHA class and on condition that 100% biventricular
stimulation can be achieved, even through AV junction ablation if
needed. Finally, there is indication to up-grade a conventional PMK
or ICD to CRT or CRT with ICD in HF patients in an advanced
NYHA class with left ventricular dysfunction and a high percentage
of ventricular pacing.

As yet, in patients with mild-moderate left ventricular dysfunction
in whom conventional pacing is indicated, the indication for “de
novo” CRT implantation, in order to reduce the risk of HF worsening

© 2014 ACT. All rights reserved.
due to the high percentage of right apical pacing, is less established.

LIMITS

Because of its widespread involvement of clinical, instrumental, metabolic and endocrine factors, the response to CRT is not easy to precisely establish. Nevertheless, there is general agreement that patients in whom the LVEDV reduction in the medium/long term is less than 15% should be classed as non-responders. This is not a low percentage, mostly considering that these patients account for at least 30% of all undergoing implantations[37]. The response to CRT may be sub-optimal for many reasons, ranging from the etiopathogenic and clinical heterogeneity of HF patients to the widespread and variable presence of co-morbidities or to the lack of optimization of medical therapy[38].

In the aim to increase the probability of response to CRT, it is important to ensure that left ventricular stimulation is concordant with the most delayed activation site, as identified by Tissue Doppler Imaging[39] or speckle-tracking[40] echocardiography. Moreover, the presence of large areas of fibrous scarring in the left ventricle can impair the CRT response[40], particularly if these are located in the posterior-lateral wall[41]. By contrast, the presence of vital myocardium, as identified by means of echo-dobutamine[42] or nuclear medicine techniques[43,44], has a favorable prognostic significance in CRT candidates. Briefly, in order to reduce the percentage of non-responders to CRT, it is necessary to optimize the prognostic stratification of candidates for implantation through multi-parameter evaluations[45] and to ensure correct device programming, with periodic updates of the A-V and V-V intervals which are widely recommended but not so often performed[46].

At last, the recent diffusion of remote control systems for implanted devices has improved the assistance available to CRT patients through strict monitoring of numerous vital parameters during follow-up[47]. Indeed, a strong association between remote monitoring and survival has been observed in CRT-ICD patients[48].

PERSPECTIVES

Lead positioning

Alternative forms of CRT, including biventricular endocardial and multisite epicardial pacing, have been recently proposed. Left ventricular leads cannot be implanted in up to 10% of patients undergoing CRT implantation[49]. These implant failures are not due to patient selection but rather challenges posed by anatomy leading to lead stability problems, phrenic nerve stimulation, and poor electrical measurements[49]. The quadrupolar leads recently made available in the market, allowing multiple pacing configurations, provide an opportunity to optimize the electrical performance and minimize phrenic nerve stimulation. Moreover, preliminary data suggest that simultaneous stimulation of multiple left ventricular sites using two or more pacing sites in a quadrupolar lead could enhance the acute effectiveness of CRT[50]. However, the results appear conflicting[51,52] and prospective follow-up studies are required to demonstrate clinical benefit.

During CRT device implantation, the pacing lead is usually positioned in the coronary sinus to stimulate the left ventricular epicardium. Transvenous left ventricular endocardial pacing via transeptal puncture has been proposed as an alternative method. Several experimental studies have demonstrated that endocardial pacing should elicit beneficial effects, allowing more homogeneous and rapid electric depolarization and repolarization[53,54]. In particular, pacing at an optimal individual endocardial site seems to yield enhanced left ventricular performance in comparison with conventional coronary sinus site stimulation[55]. Thus, endocardial left ventricular pacing might provide an alternative approach to CRT, when coronary sinus pacing is not viable. However, the possibility of adverse effects of endocardial CRT (eg, the risk of thromboembolic complications and the induction of mitral valve dysfunction) should be considered and carefully addressed during the evaluation of risks and benefits of the procedure.

Patient selection

As previously reported, duration of QRS interval ≥120 or 130 ms was the inclusion criterion used in major CRT trials. However, sub-group analyses based on QRS morphology[56,57,58] and a meta-analysis[59] suggested that patients with complete LBBB showed a greater benefit on the composite of morbidity/mortality from CRT, compared with patients with non-specific intraventricular conduction delay or right bundle branch block. Based on this evidence, current class I recommendations were restricted to patients with complete LBBB. However, recent studies showed that fragmented QRS complexes in the electrocardiograms of patients with nonischemic dilated cardiomyopathy and narrow QRS complexes are associated with significant intraventricular dysynchrony[60,61] and other studies suggested that fragmented QRS complexes might be useful in predicting response to CRT[62,63]. Ongoing studies are investigating the possibility of maximizing CRT benefits by refining ECG selection criteria[64].

Several studies have addressed the issue of the interventricular and left intraventricular dysynchrony caused by right apical pacing. These studies have tested “de novo” CRT implantation in patients with a conventional pacing indication, both with preserved left ventricular systolic function[65-67] and with moderate-severe left ventricular dysfunction[68,69]. The results suggest that CRT plays a preventive role with regard to HF mortality/hospitalizations only in patients with left ventricular dysfunction (LVEF ≤40%). Indeed, left ventricular systolic dysfunction has recently been suggested as an independent predictor of the adverse clinical impact of pacing[70], even though the preventive impact of CRT on HF in these patients must be carefully evaluated considering the increase in complications due to the greater number of leads implanted (6.5% vs 18%, conventional pacing vs CRT in the BLOCK-HF study[71]).

An alternative strategy in these patients is to up-grade to CRT after first implanting a conventional PMK. This approach provides the same clinical benefit as “de novo” CRT implantation, but is however associated with a considerable percentage of complications[71].

Further evidence of the potential benefit of “de novo” CRT implantation in patients with conventional pacing indications in whom right apical stimulation cannot be avoided is expected from the BIOPACE trial (ClinicalTrials.gov Identifier: NCT0187278), while the on-going MIRACLE-EF study (ClinicalTrials.gov Identifier: NCT01735916) is testing the efficacy of CRT in patients with left ventricular dysfunction (LVEF 36%-50%) and LBBB but without indication for definitive pacing.

Finally, in patients with a prolonged PR interval, LBBB and left ventricular dysfunction, the REAL-CRT (Biventricular pacing in prolongEd AV interval) study will evaluate the synergic effect of atrio-ventricular and inter-ventricular synchronization provided by CRT in patients with a minimum or intermittent indication for pacing (ClinicalTrials.gov Identifier: NCT02150538).

CONCLUSIONS

A large number of studies have already demonstrated that, compared...
with optimal medical therapy alone, CRT can reduce HF mortality and hospitalizations in selected HF patients in NYHA classes II-IV. Whether indications for CRT should be extended to patients with an indication for conventional pacing, mild-moderate (or even no) left ventricular dysfunction and a high percentage of right apical pacing will need to be evaluated in view of the expected increase in complications due to the greater number of leads implanted.

CONFLICT OF INTERESTS

Sergio Valsecchi, Umberto Riva are employees of Boston Scientific Italy; There are no other conflicts of interest with regard to the present study.

REFERENCES

1. Nieminen MS, Harjola VP. Definition and epidemiology of acute heart failure syndromes. Am J Cardiol 2005; 96: 5G-10G

Effectiveness of spironolactone added to an angiotensin-converting enzyme inhibitor and a loop diuretic for severe chronic congestive heart failure (the Randomized Aldactone Evaluation Study [RALES]). *Am J Cardiol* 1996; **78**: 902-907

Linde C, Abraham WT, Gold MR, St John Sutton M, Ghibo S, Daubert JC, REVERSE (RESympolactone neReVERSers Remodeling in Systolic left Ventricular dysfunction) Study Group. Randomized trial of cardiac resynchronization in mildly symptomatic heart failure patients and in asymptomatic patients with left ventricular dysfunction and previous heart failure symptoms. *J Am Coll Cardiol* 2008; **52**: 1834-1843

Effectiveness of spironolactone added to an angiotensin-converting enzyme inhibitor and a loop diuretic for severe chronic congestive heart failure (the Randomized Aldactone Evaluation Study [RALES]). *Am J Cardiol* 1996; **78**: 902-907

Linde C, Abraham WT, Gold MR, St John Sutton M, Ghibo S, Daubert JC, REVERSE (RESympolactone neReVERSers Remodeling in Systolic left Ventricular dysfunction) Study Group. Randomized trial of cardiac resynchronization in mildly symptomatic heart failure patients and in asymptomatic patients with left ventricular dysfunction and previous heart failure symptoms. *J Am Coll Cardiol* 2008; **52**: 1834-1843

Birnie DH, Tang AS. The problem of non-response to cardiac resynchronization therapy. *Curr Opin Cardiol* 2006; **21**: 20-26

Ypenburg C, van Bommel RJ, Delgado V, Mollema SA, Bleeker GB, Bohorsa E, Schalij MJ, Bax JJ. Optimal left ventricular lead position predicts reverse remodeling and survival after cardiac resynchronization therapy. *J Am Coll Cardiol* 2008; **52**: 1402-1409

Ypenburg C, Roes SD, Bleeker GB, Kaandorp TA, de Roos A, Schalij MJ, van der Wall EE, Bax JJ. Effect of total scar burden on contrast-enhanced magnetic resonance imaging on response to cardiac resynchronization therapy. *Am J Cardiol* 2007; **99**: 657-660

Bleeker GB, Kaandorp TA, Lamb HJ, Bohorsa E, Steendijk P, de Roos A, van der Wall EE, Schalij MJ, Bax JJ. Effect of postero-lateral scar tissue on clinical and echocardiographic improvement after cardiac resynchronization therapy. *Circulation* 2006; **113**: 969-976

Ypenburg C, Sieders A, Bleeker GB, Holman ER, van der Wall EE, Schalij MJ, Bax JJ. Myocardial contractile reserve predicts improvement in left ventricular function after cardiac resynchronization therapy. *Am Heart J* 2007; **154**: 1160-1165

Ypenburg C, Schalij MJ, Bleeker GB, Steendijk P, Bohorsa E, Dibbets-Schneider P, Stokkel MP, van der Wall EE, Bax JJ. Extent of viability to predict response to cardiac resynchronization therapy in ischaemic heart failure patients. *J Nucl Med* 2006; **47**: 1565-1570

Ypenburg C, Schalij MJ, Bleeker GB, Steendijk P, Bohorsa E, Dibbets-Schneider P, Stokkel MP, van der Wall EE, Bax JJ. Impact of viability and scar tissue on response to cardiac resynchronization therapy in ischaemic heart failure patients. *Eur Heart J* 2007; **28**: 33-41

Auricchio A, Prinzen FW. Non-responders to cardiac resynchronization therapy: the magnitude of the problem and the issues. *Circ J* 2011; **75**: 521-527

Pappone C, Čalović Ž, Vicedomini G, Cuko A, McSpadden LC, Ryu K, Romano E, Saviano M, Baldi M, Pappone A, Ciacc-
Mazza A et al. Resynchronization Therapy, Heart Failure

61 Celikyurt U, Agacidiken A, Sahin T, Al N, Kozdag G, Vural A, Ural D. Number of leads with fragmented QRS predicts response to car-

Peer reviewer: Yengi Umut Celikyurt, MD, Department of Cardiology, Kocaeli University, Umuttepe Yerleskesi, Kocaeli, 41380, Turkey.