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ABSTRACT
Statins are widely prescribed and very effective drugs in prevention 
of cardiovascular disease. There is large variability between 
individuals in drug response to statins. It is demonstrated that 
genetic variation influences the inter-individual differences in both 
pharmacokinetic and pharmacodynamic pathways, which leads to 
altered efficacy and enhanced adverse drug reactions. 
    Pharmacogenetics aims to provide maximum clinical efficacy 
together with minimized adverse drug reactions and possibly letting 
“personalized medication” possible. Several pharmacogenetic 
gene studies including single nucleotide polymorphisms have 
been performed related to candidate genes that may impact the 
enzymes, metabolisms, transport systems and hence may alter 
pharmacokinetic and pharmacodynamic properties of statins.
    This article reviews, the polymorphic genes CYP3A4, CYP3A5, 
CYP2D6 and CYP2C9 that are members of the cytochrome P450 
(CYP) enzymatic pathways in respect to their effect on altering of 
statin metabolism. In addition, the effects of HMG-CoA reductase 
and apolipoprotein E genes and their variants on lipid lowering 
efficacy of statins are evaluated. Variants of the other genes 
associated with the clinical events after statin therapy including 
SLCO1B1, CETP, ABCB1, ABCB2 (BRCP), KIF6 and other genes 
are also discussed. 
   Since genetic markers are predictive of response to statin 
therapy, research in the field of pharmacogenetics aims to guide 
personalized treatment of hypercholesterolemia. With this purpose 
their potential application in clinical practice should be investigated 
in large cohorts of patients and especially genome-wide association 

studies. Further trials will determine whether any pharmacogenetic 
testing would be beneficial in providing a “tailoring treatment” of 
statins in the management of cardiovascular disease.
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INTRODUCTION
Coronary heart disease (CHD) continues to be the leading cause 
of morbidity and mortality among adults in Europe and North 
America[1,2]. Hypercholesterolemia is known to be a highly significant 
risk factor in the development of cardiovascular disease (CVD)[3]. 
Statins are a wide group of drugs which blocks cholesterol synthesis 
by inhibiting the enzyme 3-hydroxy-3-methylglutaryl coenzyme A 
(HMG-CoA) reductase. Prescription and clinical use of statins has 
reached excessive numbers and they became the most prescribed 
class of drug worldwide since their introduction into the marketplace 
in 1986[4]. Despite their proven efficacy on lipid lowering and 
reducing the risk of cardiovascular events and protection against 
CVD, there is considerable inter-individual variability to statins in 
terms of both efficacy and toxicity[5,6]. 
    Pharmacogenetics refers to genetic differences in metabolic 
pathways and investigates the role of genetics in determining an 
individual’s response to a drug. Over the past decade studies have 
focused on the issue of which genetic factors contribute to this 
variation in therapeutic and adverse effects of statins[7,8]. Despite their 
wide use only one-third of patients treated with statins reach their 
targeted plasma low density lipoprotein-cholesterol (LDL-C) levels[9]; 
in addition pharmacogenetic variability may also lead to serious 
adverse drug reactions (ADR) including statin associated myopathy 
which can range from mild myalgia to severe muscle myopathy[10]. 
    Recent pharmacogenetic s tudies revealed functional 
polymorphysims including single-nucleotide polymorphisms (SNP’s) 
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CYP-mediated metabolism (like pravastatin and pitavastatin). 
Potential drug interactions should be taken into consideration since 
CYP2C9 activity is inhibited by some drugs and therefore statin 
levels and efficacy could be affected[30,31]. As yet evidence regarding 
polymorphisms within CYP genes which alter the metabolism 
and efficacy of statins is insufficient, more data from further 
investigations related to these interactions would be beneficial for the 
prediction of effectiveness and toxicity.

Statins and Cellular Transporters
There are important energy and non-energy-mediated cellular 
transport systems involved in drug transportation. Influx and efflux 
transporters expressed on the plasma membranes considerably 
modify the absorption, distribution and elimination and consequently 
the efficacy and toxicity of statins[32]. ATP (adenosine triphosphate)-
binding cassette (ABC) and solute carriers (SLCs) are of the most 
significant super-families of these membrane transporters[13,33,34].

ATP-Binding Cassette Transporters (ABC Transporters)
One of the transport systems, the ATP-binding cassette subfamily 
B (ABCB), is responsible for the liver drug efflux, and influences 
the lipid-lowering activity of statins. Several genes associated with 
the ABC transporters family are involved in both pharmacokinetic 
(ABCB1, ABCC2, ABCG2 and ABCB11) and pharmacodynamic 
(ABCA1, ABCG5 and ABCG8) properties of statins[35].
    The effects of ABCB1 transporter variants (which encodes 
P- glycoprotein, an efflux transporter), on the variability in 
pharmacokinetics of statins have been reported in several studies[33,36]. 
The c.1236C>T, c.2677G>T and c.3435C>T polymorphisms within 
the ABCB1 gene, and CGC and TTT haplotypes are the most 
commonly investigated variants[37]. ABCB1 3435T allele leads to 
impairment of efflux function and could enhance intestinal absorption 
of statins[17]. It has been found that carriers of the TTT genotypes 
express low function and have higher area under curve (AUC) values 
of simvastatin acid and atorvastatin compared with the common CGC 
haplotype[38]. Another study revealed that carriers of the ABCB1 
1236T variant allele had a greater reduction in TC and LDL-C with 
simvastatin treatment compared with the homozygotes with the wild 
type allele and similar results were observed for the 2677G>A/T 
polymorphism[26]. Peters et al[36] evaluated data from the Pharmaco-
Morbidity Record linkage system of the Netherlands (PHARMO) 
study involving 668 cases with myocardial infarction and 1217 
controls all treated with statins. They tested common variants of 24 
tagging SNP’s and found a significant interaction between statin 
therapy (simvastatin, atorvastatin, and pravastatin) and two SNP’s 
within ABCB1 (rs3789244 and rs1922242).
    The ABC transporters G5 (ABCG5) and G8 (ABCG8) are involved 
in intracellular cholesterol transport and mediate biliary excretion 
of cholesterol, thus impairment of this pathway could interact 
with cholesterol biosynthesis and response to statin treatment[39,40]. 
Kajinami et al[41] genotyped a group of patients treated with 10 mg of 
atorvastatin, and found that D19H variant allele (rs 11887534 SNP) 
in the ABCG8 was significantly associated with a greater reduction in 
LDL-C levels compared to the wild type homozygotes.
    Another determinant of statin pharmacokinetics is the ABCG2 
efflux transporter also known as breast cancer resistant protein (BRCP) 
(encoded in the ABCG2 gene), which modulates the absorption and 
elimination of statins including rosuvastatin and atorvastatin[42-44]. 
ABCG2 c.421C>A SNP results in a reduced BRCP transport 
activity, which has an important role in limiting the absorption of 
statins[39]. Variants of the ABCG2 efflux transporter (BRCP) were 
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that result in an amino-acid change or other variation in genes 
encoding several drug transporters or drug metabolizing enzymes 
which may also alter these effects of statins besides other individual 
environmental factors[3,5,11,12]. This paper summarizes the current 
knowledge of the role of pharmacogenetic factors in efficacy and 
ADR’s of statins which are in clinical use.

GENETIC FACTORS ASSOCIATED WITH 
PHARMACOKINETIC PATHWAYS OF 
STATINS
Cytochrome P450 Enzymes (CYP Enzymes) 
Statins are highly extracted and mostly metabolized in the liver 
by the microsomal cytochrome P450 (CYP) system that converts 
these lipophilic drugs into hydrophilic molecules. Statins, such as 
lovastatin, atorvastatin and simvastatin are mainly metabolized 
by CYP450 isoenzyme CYP3A4 and fluvastatin by CYP2C9, 
conversely pravastatin and rosuvastatin, which are hydrophilic 
molecules undergo minimal CYP-mediated metabolism[13-16]. Beside 
CYP3A4 and CYP2C9, CYP2D6 and CYP3A5 contribute to the 
metabolism of certain statins. Since CYP450 enzymatic pathways are 
considerably involved in biotransformation of statins, polymorphisms 
affecting these enzymes may impact the statin metabolism and drug 
efficacy[17-20].
    It was demonstrated that in patients treated with 10 mg/day of 
atorvastatin, the A-290G variant in the CYP3A4 promoter caused 
a reduced response and hence an smaller decrease in LDL-C level, 
whereas the M445T variant carriers showed an enhanced efficacy 
response and lower LDL-C levels compared with the wild type allele 
(non carriers)[21]. In addition, it was reported that the *4[18] and *1 
G alleles[19] of CYP3A4 were associated with enhanced response to 
related statins.
    Carriers of the CYP3A5*1 allele are referred to as expressers of 
CYP3A5, whereas CYP3A5*3 allele (rs776746) reduces expression 
of CYP3A5 and is associated with difference on efficacy of certain 
statins[22-24]. Kivisto et al reported an association between the 
CYP3A5 genotype and lipid response to lovastatin, simvastatin and 
atorvastatin and found higher LDL-C reduction in carriers of the 
CYP3A5*3 allele compared to CYP3A5 expressers[25]. Contrary 
to this finding, there are some other trials which either did not 
report any association between the CYP3A5 polymorphism and 
lipid lowering response[26] or demonstrated contradictory results[24]. 
Although there is not sufficient data to support a major involvement 
of CYP3A5 enzymatic pathway in statin metabolism, results from 
studies mentioned above suggest that CYP3A5 genotype differences 
could affect the efficacy of treatment with certain statins[27].
    Carriers of the CYP2D6 homozygous mutant alleles (CYP2D6 
mut/mut), which are defined as poor metabolizers (PM) add to at least 
10% of the general population, and ultra-rapid metabolizers (UM) of 
this gene also have similar high percentage[14,27]. A study investigating 
CYP2D6 variants revealed that PM demonstrate increased lowering 
of total cholesterol (TC) and higher incidence of side effects due 
to the decreased metabolism of simvastatin and hence result in 
increased plasma concentrations of the drug compared with the wild-
type (CYP2D6 wt/wt) carriers[28]. Similar results observed in another 
study replicated that carriers with low activity variants display higher 
efficacy of statin treatment[29]. As CYP2D6 is not mainly involved in 
statin metabolism, how it plays a role in statin treatment efficacy is 
still unclear[14].
    It is suggested that CYP2C9 may be involved partially in the 
metabolism of rosuvastatin, although rosuvastatin undergoes minimal 
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AUC analyses from other studies reported a 173% increase in AUC 
values for pitavastatin, 144% for atorvastatin, 90% for pravastatin 
and 87% for rosuvastatin[60,66,67]. These differences may be due 
to different pharmacokinetic properties of the statins and other 
influx transporters which involve their uptake[32]. The individual 
combination of haplotypes affects transporter function. While 
c.388A>G haplotype leads to an enhanced OATP1B1 activity and 
decreases the statin concentrations[61], the c.521T>C SNP increases 
statin levels by impairing this activity[66] (Table 1).
    Despite some in vitro studies which show that OATP1B1 is 
likely to have a similar transport activity to the reference haplotype 
1*a[56,62,68], some small in vivo studies with pravastatin suggest that 
*1b allele leads to an increased transport activity compared with *1a 
allele[61,69] (Table 1). Further studies with other statins are required to 
determine more information about the effect of the *1b allele. Studies 
show that the presence of a single copy of the*15 allele is associated 
with a significant decrease in hepatic uptake, and this increase in 
plasma AUC is enhanced when two copies of this haplotype are 
present[63,65,70]. According to the results of in vivo pharmacokinetic 
studies a single copy of the *15 allele leads to an increase in plasma 
AUC. This possible substrate specific effect is more notable when 
two copies of the *15 allele are present. Consequently, many 
researchers have suggested that the presence of one or two variant 
alleles *5 or *15 haplotypes would lead to an attenuated lipid 
lowering response to related statins[50] (Table 1).

OATP and Adverse Drug Reactions
It is suggested that adverse drug reactions including myopathy are 
related to the increase in plasma concentration of statins[64]. Since 
statin-induced myopathy is a concentration-dependent adverse drug 
reaction, researchers argue that when statins are especially used in 
high daily doses, the SLCO1B1 c.521>C SNP increases the risk of 
myopathy[32]. Study of the Effectiveness of Additional Reductions in 
Cholesterol and Homocysteine trial (SEARCH) Collaborative Group 
confirmed this risk for simvastatin, in a genome wide association 
study[71]. The study recruited 12,064 patients which were allocated to 
receive either 20 mg or 80 mg of simvastatin. After a follow up of 6 
years, myopathy was identified in 85 patients of the high simvastatin 
(80 mg) group. When the 85 patients with myopathy were compared 
to a control group of 90 patients it was shown that a non-coding 
SNP in the SLCO1B1 gene (rs4363657) which is in strong linkage 
disequilibrium with the c.521T>C SNP (r2=0.97) was strongly 
associated with simvastatin induced myopathy. The odds ratio was 4.5 
per copy of the c.521C allele, and this risk further increased among 
homozygous CC individuals (odds ratio 16.9). In the heart protection 
study, the association between c.521C and myopathy was replicated 
in a cohort of 16640 patients (with 23 confirmed cases of myopathy) 
on 40 mg/day simvastatin (p=0.004); the relative risk of myopathy 
per C allele was 2.6[71]. The other study with the GWAS approach was 
the STRENGTH (Statin Response Examined by Genetic Haplotype 
Markers). In the mentioned study, 509 patients were randomized to 
receive low or high dose simvastatin, pravastatin or atorvastatin[72]. 
The SLCO1B1 5 genotype (c.521T>C SNP) was significantly 
associated with a gene-dose effect with any of adverse effects 
including discontinuing the trial for myalgia with or without reported 
increase in creatine kinase (CK)[72]. The study also revealed that an 
increased statin induced muscular toxicity is observed in female sex 
possibly associated with lower average body mass index (BMI) of 
women. Another important issue observed in the mentioned study 
is that polymorphism in SLCO1B1 and myopathy during therapy in 
other statins except simvastatin remains uncertain. Adverse effects to 

evaluated by Keskitalo et al in two studies. Carriers of the c.421AA 
polymorphisms in ABCG2 gene were associated with 144% increases 
in the AUC of rosuvastatin and 72% for atorvastatin compared with 
the c.421CC genotype[45], and similarly 111% increase for simvastatin 
lactone due to the decrease in the intestinal efflux of statins[46].

Organic anion transporting polypeptides (OATP’s/SLCO 
Transporters)
Organic anion transporting polypeptides (OATP’s) or solute carrier 
organic anion transporters (SLCO’s) play a crucial role in drug 
uptake and efficacy as many other endogen organic compounds and 
are expressed in the liver, intestine and brain[32,47,48]. 
    Organic anion transporting polypeptide 1B1 (OATP1B1) 
previously known as OATP2, OATP-C and liver specific transporter 
1, is a member of solute carrier OATP family coded by the 
SLCO1B1 gene. Under current nomenclature, the gene is referred 
to as SLCO1B1 and the protein as OATP1B1[49,50]. OATP1B1 is 
a 691-amino acid glycoprotein and it is one of the main influx 
transporters expressed on the plasma membrane of the hepatocytes 
in the liver[48,51,52]. Besides OATP1B1, there are some other OATP’s; 
OATP1B3 is expressed exclusively in the liver, OATP1A2 in the 
liver, intestine and brain and OATP2B1 is localized and expressed 
in the liver, small intestine and skeletal muscle[39,53,54]. OATP1B1 is 
involved in transporting a number of endogenous and exogenous 
substances, including several bile acids, bilirubin, thyroid hormones, 
methotrexate[49,55] and statins. It has also been shown that all statins in 
clinical use are substrates of OATP1B1[56-60]. Many sequence variants 
have been found within the SLCO1B1 gene, located on chromosome 
12[32,50]. 
    The c.388A>G and c.521T>C SNP’s are the most frequently 
investigated polymorphisms and four types of haplotype are 
described related to presence of these polymorphisms, alone or in 
combination with each other in three haplotypes; SLCO1B1*1b, *5 
and *15 (reference haplotype is SLCO1B1*1a)[32,44,50]. Haplotypes 
of SLCO1B1 and their transport activity from in vitro and in vivo 
studies are sited in table 1.
    Several studies have investigated the effect of genetic 
polymorphisms including the SLCO1B1 gene and the two main 
variants c.388A>G and c.521T>C SNP’s, which involve transport 
activity and affect statin transport[61,62].
    In a series of studies, the effects of the SCLO1B1 c.521T>C SNP, 
on the pharmacokinetics of fluvastatin, pravastatin, simvastatin, 
atorvastatin and rosuvastatin were investigated in the same 32 healthy 
young subjects[63-65]. In Pasanen et al study, both heterozygotes (TC) 
and homozygotes (CC) carriers of the c.521T>C polymorphism show 
increased plasma concentration of atorvastatin due to the decreased 
uptake into the liver[65]. When patients homozygous for the c.521CC 
were compared with patients expressing the c.521TT allele, based on 
the AUC analysis, the largest effect was 221% increase in exposure 
to simvastatin acid (active form) in homozygous patients[64]. Further 

Table 1 Haplotypes of SLCO1B1 and in vitro and in vivo transport activity 
changes including the reference haplotype.

Haplotype

*1a
*1b
*5

*15

Nucleotide change

Wild type
c.388A>G
c.521T>C
c.388A>G
c.521T>C

In vitro 
transport activity
—
—
↓*

↓*

In vivo 
transport activity
—
—↑**
↓

↓

Data from[32,39,44,50,56,61,62,66,68,69]. 
↓: decreased activity; —: no change in activity; ↑: increased activity; 
*except for simvastatin; **Possibly substrate specific.



dependent on ApoE polymorphism[84].

Cholesteryl Ester Transfer Protein
The cholesteryl ester transfer protein (CETP) enzyme participates 
in the cholesterol transport from peripheral tissues back to the 
liver[74]and is also involved in the transport of triglycerides from 
LDL and very LDL (VLDL) to high-density lipoprotein (HDL )
[27,85]. A common polymorphism in the CETP gene is Taq 1B variant 
and is associated with variations in lipid transfer function and 
hence elevated CETP and lower HDL-C levels[86,87]. Lower HDL 
concentrations are observed in patients with the B1B1 genotype of 
the CETP gene, besides increased risk of CHD compared with B2B2 
genotype[88,89]. It was also observed that progression of coronary 
artery atherosclerosis was slower during pravastatin therapy in B1B1 
carriers, whereas B2B2 carriers did not benefit sufficiently despite 
higher HDL levels[89]. In another study, diabetic patients treated with 
atorvastatin were evaluated and despite B1B1/CC polymorphism 
carriers initially showed more atherogenic lipid profile, they had 
higher HDL-C levels as a better response compared with carriers of 
the B1B2 and B2B2 variants[90].
    In the West of Scotland Coronary Prevention Study (WOSCOPS) 
the B2B2 genotype had elevated HDL-C levels at baseline. Although 
associated with only 0.5% increase in plasma HDL-C levels, B2B2 
genotype was found to have a 30% decreased risk of cardiovascular 
end-points than those of B1B1 homozygotes[91]. In Regression Growth 
Evaluation Statin Study (REGRESS) cohort, 10-year follow-up 
analysis reported similar results. Despite inadequate HDL-C levels, 
lower risks in myocardial infarction (MI) and death from ischemic 
heart diseases were observed with statin therapy for B1B1 carriers 
compared to B2 carriers[92]. Recently, another large meta-analysis 
including nearly 13,000 patients revealed a significant association 
between the Taq1B genotype and HDL-C levels but did not find any 
association between altered efficacy in statin therapy and the Taq1B 
polymorphism[93]. Many other studies also investigated the CETP 
polymorphism, and reported contradictory results regarding Taq1B 
polymorphism and its effect on efficacy of statin treatment or on 
cardiovascular events in patients with CHD treated with statins[94-96].

HMG-CoA Reductase Enzyme 
Statins are competitive inhibitors of HMG-CoA reductase 
(HMGCR), encoded by the HMGCR gene, is the rate limiting 
enzyme for the biosynthesis of cholesterol and converts HMG-
CoA to mevalonic acid[97]. Variants of the HMGCR gene include 
SNP12 (rs17244841) and SNP 29 (rs17238540), both which are 
observed in equal frequencies and tightly linked to each other. These 
SNP’s alter the response to statin therapy and lead to less reduction 
of TC and LDL-C levels during statin treatment[98]. The PRINCE 
study (Pravastatin Inflammation/ C reactive protein Evaluation) 
investigated 148 SNP’s in ten candidate genes involved in lipid 
metabolism in 1536 participants. The researchers reported that SNP 
12 and SNP 29 were significantly associated with a reduced response 
to pravastatin therapy; 22% less in TC and 19% less in LDL-C levels 
compared with participants who did not bear either of this alleles[98]. 
The GoDARTS study showed that 51% of G allele carriers and 28% 
of T allele carriers displayed a failure to achieve treatment targets[99].
    However, the data from the Pravastatin in Elderly Individuals at 
Risk of Vascular Disease (PROSPER) trial[100] could not indicate 
any relationship between these SNP’s and lipid responses and 
clinical outcomes. More data from new studies are needed to show 
whether there is an influence of HMGCR gene on the lipid response 
variability of statin treatment.
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statins including discontinuation were reported by Donelly et al[73] in 
over 4,000 type 2 diabetic patients treated with statins. Among these 
patients carriers of the SLCO1B1 5 variants had 2- fold increase in 
statin intolerance. All these results strongly indicate that the c.521T>C 
SNP may be a highly predictive marker for the attenuated response 
to lipid lowering effects of statins, especially simvastatin, including 
statin-induced myopathy. 

GENETIC FACTORS ASSOCIATED WITH 
THE PHARMACODYNAMIC PATHWAY OF 
STATINS
Apolipoprotein E
Apolipoprotein E (ApoE) has multiple roles in lipid metabolism. 
It mediates lipid metabolism by binding to lipids and lipoprotein 
receptors and modulates the transport of very low-density 
lipoproteins (VLDL) and chylomicrons from plasma to the liver[74]. 
ApoE is a ligand for the LDL receptor, plays a significant role 
in cholesterol transport throughout the body, in addition affects 
intestinal absorption[17]. Apo E is a genetically polymorphic gene with 
three common alleles E2, E3 (wild type) and E4 alleles encoding 
proteins with increasing affinity for the LDL receptor respectively[75]. 
Since cholesterol clearance from the circulation is faster in E4 allele 
carriers than E2 and E3 allele carriers, downregulation of HMG-CoA 
reductase and low-density- lipoprotein receptor (LDLR) results in 
an increase in the plasma LDL-C concentrations. On the other hand, 
impairment of the clearance leads to upregulation of the synthesis 
of HMG-CoA reductase and hence lower LDL-C and LDLR in 
E2 carriers[17,75]. As a result, patients with the E2 genotype could 
benefit more from statin therapy and demonstrate greater cholesterol 
reductions compared with the E4 genotype[76-78], but the literature 
is inconsistent. The GoDARTS (Genetics of Diabetes Audit and 
Research in Tayside) study revealed that one-third of patients of E4 
variant could not reach expected target levels of LDL-C with statin 
treatment compared with patients possessing the E2 variant who 
reached the target LDL-C levels[78].
    There are many similar studies which report that the E4 allele is 
associated with a decreased response to statins compared with the 
E2 allele. A reduced therapeutic compliance with statin therapy (2-3 
fold) was observed in E4 carriers, possibly explained by the lower 
therapeutic efficacy or adverse effects due to statins[79,80]. One study 
revealed that males with the E2 allele showed larger reduction of 
LDL-C and TC compared with females although baseline lipid 
levels were similar in both groups[77]. As a result it was suggested 
that the alterations in lipid-lowering effect of ApoE variants could 
be gender-specific. However, in a sub-study of the Scandinavian 
Simvastatin Survival Study (4S trial), although E4 carriers 
demonstrated reduced LDL-C lowering response, they benefited 
most from statin treatment with respect to reduction in mortality 
risk. The higher reduction in mortality risk is probably associated 
with the initial greater mortality risk of Apo E4 allele carriers 
compared with non-carriers[81]. The paradoxically enhanced benefit 
of statins in E4 carriers may also be explained by the “pleiotropic” 
anti-inflammatory effect of statins[75,82]. Nevertheless, in Regression 
Growth Evaluation Statin Study (REGRESS) data from 815 men 
with CHD who received either pravastatin or placebo could not 
confirm any association between ApoE genotype variation and 
statin treatment in terms of cardiovascular end points[83]. Similarly 
analyses from almost 8,000 patients from the Rotterdam study 
showed protective cardiovascular effects of statins were not 
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KIF6 Gene
The kinesin-like protein 6 is encoded by KIF6 gene and participates 
in intracellular molecule transport in several tissues, including the 
vascular system[17,101]. Findings of several studies confirmed that 
the Trp719 Arg (rs20455) SNP in the KIF6 gene could alter the 
responses to statin treatment[102-104] and is associated with CHD[103-

107]. The analysis of the Comparison of Intensive and Moderate Lipid 
Lowering with Statins after Acute Coronary Syndromes (PROVE 
IT-TIMI 22) study has shown an increased reduction regarding the 
risk in cardiovascular end points by statin therapy[102] in carriers of 
the KIF6 Trp719 Arg allele compared with non-carriers. Two other 
clinical trials, Cholesterol And Recurrent Events (CARE) trial and 
West Of Scotland Coronary Prevention Study (WOSCOPS)[103] 
revealed similar results and confirmed that carriers of this SNP obtain 
significantly increased benefit from statin therapy than that of non-
carriers. Nevertheless, since some other trials reported inconsistent 
results[101,108], the association between the KIF6 polymorphism and 
cardiovascular events and effects on response to statins has not been 
exactly proven.

Other polymorphic genes
Genetic variation in LDL-C related candidate genes have been 
investigated by researchers in some studies. Some alternations in 
the LDL-receptor gene (LDLR gene), encoding the LDL receptor, 
result in familial hypercholesterolemia[17,109]. Expression of LDL 
receptors is indirectly up-regulated due to inhibition of HMG-CoA 
reductase enzyme during statin treatment[27,110]. Mutations in LDLR 
gene could lead to alterations in lipid metabolism and expression of 
LDL receptors, thus altering lipid lowering response to statins[109,111]. 
However, it is difficult to interpret the inconsistent results from 
several studies because of the baseline lipid level differences due to 
the genetic variations[85]. Sterol regulatory element-binding protein 2 
(SREBP-2) is a transcription factor, which is induced by statins, that 
activates the proprotein convertase subtilisin/kexin type 9 (PCSK9) 
gene which regulates the number of membrane LDL receptors by 
degradation[27,112]. Genetic variations within PCSK9 gene were 
investigated and inconsistent results were obtained[113,114]. Depending 
on their type, variants of this gene could lead to enhanced or impaired 
functions on LDL-receptor expression, therefore a polymorphism 
in PCSK9 may alter the response to statin treatment since 
treatment success depends on upregulation of these receptors[110,112]. 
Observations in several studies propose that polymorphisms affecting 
this gene play an important role in LDL receptor expression and also 
affect the response to statins[110,115,116].
    Polymorphisms in genes, which modulate the vascular smooth 
muscle function, are suggested to play a significant role in the 
muscular side effects during statin therapy[14,117]. Researchers have 
also investigated the polymorphisms in other genes involved in 
the lipid-independent pleiotropic effects of statins, which alter 
the inflammation process of CHD, including eNOS, encoding the 
enzyme endothelial nitric oxide synthase (eNOS) and IL6 encoding 
interleukin 6 (IL-6)[17,113,114,118]. Evidence from in vivo and in vitro 
studies indicated that eNOS polymorphisms modulate the responses 
to statins[119-122]. eNOS -786 T >C polymorphism is the most 
studied variant and carriers of the C allele show decreased eNOS 
transcriptional activity up to 50% than those of non-carriers[123,124]. 
A clinical study investigating 786 T >C polymorphism concerning 
atorvastatin treatment in healthy volunteers, revealed that CC 
genotype showed increased nitric oxide (NO) availability and 
antioxidant effects compared to TT genotype[121]. Since carriers of the 
CC genotype are more susceptible to develop CVD, it is suggested 

that statins could induce endogen NO formation and hence prevent 
enhanced cardiovascular risk[118]. However, the clinical evidence 
regarding the effectiveness and prophylactic use of statins in cases 
with specific genotypes (CC genotype for eNOS polymorphism) in 
order to lower cardiovascular events is not yet sufficient.

SUMMARY
Statins are widely prescribed and highly effective drugs in 
cardiovascular drug treatment. Because there is large variability 
in clinical response with their lipid lowering efficacy and adverse 
drug reactions, several pharmacogenetic gene studies have been 
carried out and different results have been reported associated with 
genetic variations in response to statin therapy (Table 2). Since 
statins are mainly metabolized in the liver by the CYP enzymes, 
the relationship between polymorphisms affecting these enzymatic 
pathways and statin efficacy has been detected in some studies. 
CYP3A4 variants A-290 G and M445T[21] and also CYP3A5* 3 
allele[25] have been shown to alter the lipid lowering response to 
some statins and LDL-C levels. Low activity variants of CYP2D6 
(PM) display decreased metabolism of certain statins and lead to 
lower LDL-C levels[28]. Important genes associated with the lipid 
lowering response to statin therapy include the HMGCR and APOE 
genes. There is a significant amount of evidence that variations 
in the HMGCR gene (SNP 12 and SNP 29) influence the lipid-
lowering efficacy of statins and cause less reduction of LDL-C and 
TC levels[98]. The ApoE E2/E3/E4 polymorphism has been shown 
to alter the efficacy of statin treatment[78-80]. But the results are 
still not strong enough to know whether it impacts the course of 
CHD[81,83]. Some other important genes associated with the clinical 
events after statin therapy consist of SLCO1B1, CETP, ABCB1, 
ABCB2 (BRCP) and KIF6 genes[6]. Studies in drug transporter 
variants have shown that ABC and OATP transporting systems 
significantly are involved in the absorption and disposition of statins. 
SLCO1B1 c.388A>G and c.521T>C polymorphisms have been 
widely investigated and revealed that the c.521T>C SNP (*5 or *15 
haplotypes) is related to reduced transporter activity and increases 
in AUC values of several statins[60,63,66,67]. There is also convicting 
evidence for association between the SLCO1B1 c.521C allele and 
increased risk of statin induced myopathy, particularly in patients on 
high dose of statins[63,70-72]. ABCB1 gene c.3435C >T and c.1236C>T 
polymorphisms have been shown to affect the response to statin 
treatment[38,125]. c.421C>A SNP in ABCG2(BRCP) gene has led 
to reduced BRCP transport activity and carriers of the c.421AA 
polymorphisms have increased AUC of statins than those of c.421CC 
genotype[45,46]. Some other studies show that the Taq1B variants of 
the CETP gene have been associated with decreased plasma HDL-C 
levels as well as variable benefit response to statin therapy[89,92]. Little 
is known about the contributions of other gene variants in statin 
response, and more clinical trials are required to assess their influence 
on statin therapy.

CONCLUSIONS AND CLINICAL IMPLICATIONS
Over previous years a group of studies have identified polymorphisms 
in the pathways associated with the variation in statin response. High 
technology with respect to for detecting e.g. SNP’s associated with 
differences in drug responses of increased adverse effects have lead 
to easier access to pharmacogenetic data. Although application of 
pharmacogenetic information to clinical practice in some fields has 
demonstrated benefit in quality adjusted life year assessments, there 
still isn’t sufficient information or proof for clinicians to personalize 
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Table 2 Effects of genetic variants associated with statin response and outcomes.

Mutation/variant

A-290G 
M445T

CYP3A5*3 allele

CYP2D6 mut/mut

521T>C

*15 haplotype
(521T>C and 388A>G)

3435C>T
1236C>T
2677G>A/T

421C>A

E2/E3/E4

Taq1B
(B1B1, B1B2, B2B2 
genotypes)

SNP 12
SNP 29

Results/Outcomes
-A-290G variant caused reduced response and higher LDL-C 
levels with statin. 
- M445T variant showed lower LDL-C levels[21]

-CYP3A5*3 allele caused higher LDL-C reduction with related 
statins compared with *1 expressers[25]

-PM with mut/mut allele demonstrated enhanced lowering of 
LDL-C  and higher incidence of side effects than wild type (wt/
wt) carriers[28]

- A s s o c i a t e d w i t h i n c r e a s e d A U C l e v e l s o f v a r i o u s 
statins[63,64,65,66]

-Relative enhanced risk of stat in-induced myopathy 
(simvastatin)[71,73]

-Gene-dose related effect with any of adverse effects including 
myalgia (simvastatin)[72]

- *15 haplotype leads to an increase in plasma AUC of 
statins[60,63,65]

-TTT genotypes express low function and higher AUC values 
of statins compared with non carriers[38] 
-Carriers of 1236T variant had higher LDL-C reduction and 
2677G>A/T variants showed similar results[26]

-421AA polymorphism showed increased AUC levels of statins 
than the 421CC genotype[45,46]

-E4 allele had less reduction in LDL-C with statins whereas 
lower LDL levels in E2 carriers compared with non- 
carriers[76,78,79,80]

-E4 carriers benefited more from statin treatment with respect 
to reduction in mortality risk[81]

-B1B1 genotype associated with lower HDL-C and increased 
risk of CHD compared with B2B2 carriers[86,88,90].
-Less progression of atherosclerosis with statin therapy in B1B1 
genotype whereas B2B2 did not benefit sufficiently(increased 
10-year CV events)[89,92]

-Either SNP 12 or SNP 29 carriers had less reduction of TC and 
LDL-C levels during statin treatment than non carriers[98,99]

AUC: Area under curve; CHD: Coronary heart disease; CV: Cardiovascular; HDL-C: High density lipoprotein cholesterol; LDL: Low density lipoprotein; 
LDL-C: Low density lipoprotein cholesterol; PM: Poor metabolizer; SNP: Single Nucleotide Polymorphism; TC: Total cholesterol.

Effects
Alterations on statin metabolism and 
efficacy 
(atorvastatin)
Reduced expression of CYP3A5 and 
alterations on efficacy of certain statins 
(lovastatin, simvastatin, atorvastatin)
Alterations on statin metabolism and 
efficacy 
(simvastatin)

Reduced transport activity of statin
(simvastatin, atorvastatin, rosuvastatin, 
pitavastatin, pravastatin)
(simvastatin, pravastatin, atorvastatin)

Reduced transport activity of statin
(Various statins)
Impaired efflux function
(simvastatin, atorvastatin)
Impaired efflux function
(simvastatin)
Limited statin absorption
(rosuvastatin, atorvastatin, simvastatin)
-Altered HMG-CoA reductase levels
-Altered lipid response to statins
-Associated with reduced cardiovascular 
events
(Various statins)
-Variations in lipid transfer function
-Elevated CETP and lower HDL-C levels
- Associated with reduced cardiovascular 
events 
(Various statins)
Reduced response to statin therapy
(Various statins)

Gene

CYP3A4

CYP3A5

CYP2D6

SLCO1B1
(OATP’S)

ABCB1

ABCG2

APOE

CETP

HMG-CoA 
reductase
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Stroke Statistics Subcommittee. Heart disease and stroke statis-
tics--2007 update: a report from the American Heart Association 
Statistics Committee and Stroke Statistics Subcommittee. Circula-
tion 2007; 115: e69-171 
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ninghake DB, Pasternak RC, Smith SC Jr, Stone NJ; Coordinat-
ing Committee of the National Cholesterol Education Program. 
Implications of recent clinical trials for the National Cholesterol 
Education Program Adult Treatment Panel III Guidelines. J Am 
Coll Cardiol 2004; 44: 720-732 

4	 Kapur NK, Musunuru K. Clinical efficacy and safety of statins in 
managing cardiovascular risk. Vasc Health Risk Manag 2008; 4: 
341-353 

5	 Zineh I. HMG-CoA reductase inhibitor pharmacogenomics: over-
view and implications for practice. Future Cardiol 2005; 1:191-206 

6.	 Postmus I, Verschuren JJ, de Craen AJ, Slagboom PE, Westendorp 
RG, Jukema JW, Trompet S. Pharmacogenetics of statins: achieve-
ments, whole-genome analyses and future perspectives. Pharma-
cogenomics 2012; 13: 831-840 

7	 Schmitz G, Langmann T. Pharmacogenomics of cholesterol-
lowering therapy. Vascul Pharmacol 2006; 44: 75-89 

8	 Verschuren JJ, Trompet S, Wessels JA, Guchelaar HJ, de Maat 
MP, Simoons ML, Jukema JW. A systematic review on pharmaco-
genetics in cardiovascular disease: is it ready for clinical applica-
tion? Eur Heart J 2012; 33: 165-175 

9	 Pearson TA, Laurora I, Chu H, Kafonek S. The lipid treatment 
assessment project (L-TAP): a multicenter survey to evaluate the 

statin therapy. However it could be possible that the knowledge 
and evidence about the genes and pathways associated with statin 
response might lead to improvements in personalized dosing and 
hence improve the outcome of statin therapy in cardiovascular drug 
treatment. In the future, it seems that a systematic genetic definition 
for some SNP’s would contribute to the efficacy and safety of 
the statin treatment. Genetic variations identified by these studies 
should be tested in large cohorts of patients to evaluate their benefit 
in clinical practice. Therefore multi-gene haplotype approaches 
especially GWA studies are needed to investigate which genetic 
pathways and genetic variations are involved in the alterations during 
statin therapy outcome.
    In spi te of the great number of publ ished s tudies in 
pharmacogenomics of statin therapy there is no precise data to apply 
genetic testing for statins just yet and implementation in clinical 
practice is still far away.
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