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ABSTRACT
Cardiovascular diseases such as atherosclerosis, atherothrombosis, 
coronary artery disease and stroke are the main causes of death 
worldwide. Atherosclerosis is a chronic, progressive immune-
inflammatory and fibroproliferative disease of medium and large 
sized arteries with increased blood lipoprotein/cholesterol and their 
disposition in the arterial wall, important TH1 type proinflammatory 
reaction, and thrombogenic status. Elevated plasma levels of 
proinflammatory cytokines have been demonstrated in patients with 
established atherosclerotic disease, and therefore it is believed that 
cytokines are key players in all stages of disease and have a profound 
influence on the pathogenesis of the disease. Several authors 
suggested that the number of different pathogens, including T. gondii, 
may promote synergistic inflammatory responses that are capable of 
triggering and exacerbating atherosclerotic process. Latent chronic 

T. gondii infection may be a frequent cause of vascular endothelial 
cell dysfunction because this pathogen attacks all nucleated cells, and 
endothelium cells have enhanced susceptibility to infection with T. 
gondii tachyzoites. Oxidative stress characteristic for atherosclerosis 
may be caused by the host infection with the parasite. T. gondii is 
unable to synthesize sterol and acquires cholesterol from the host 
LDL receptor pathway. The accumulation of foamy transformed 
macrophages in the aortic intima characteristic for atherosclerotic 
lesion is due to acyl-CoA: cholesterol acyltransferase 1 and 2 
(ACAT1 and ACAT2) increased expression in macrophages and other 
cells infected with T. gondii. ACAT2 is crucial in foam cell formation 
and development of atherosclerosis. The parasite also expresses 
two cholesteryl ester(CE)-synthesizing enzymes TgACAT1 and 
TgACAT2 that contribute to the CEs formation for storage in lipid 
bodies, but at the same time ACAT and CEs play a crucial role in 
replication of the pathogen. It must be emphasized that the increased 
expression of ACAT1 and ACAT2 normally present in macrophages 
may thus be further enhanced by the superimposing TgACAT1 and 
TgACAT2 activities available in the host cells infected with T. gondii. 
In addition, proinflammatory cytokines increase foam cell formation 
and latent chronic T. gondii infection persistently generates these 
biomediators and thus play an important role in foam cell biogenesis. 
Patients with atherosclerosis had increased plasma levels of TGF-β 
and this cytokine increased T. gondii replication in the host cells, and 
participated in development of fibrotic changes in atherosclerotic 
lesions. The parasite may also produce some extracellular 
vesicles known to play a role in triggering cardiovascular events. 
Atherogenesis involved platelets activation with subsequent 
serotonin release. Hyperserotoninemia was also reported in autistic 
and mentally retarded children, and recently, a significantly higher 
seroprevalence of chronic toxoplasmosis was found in autistic 
children as compared with controls. T. gondii infection caused 
also increased leptin levels, and a marked association between T. 
gondii seropositivity and obesity has been demonstrated. Cysteine 
cathepsins (Cat) also play an important role of in foam cell formation 
and generation of amyloid in atherosclerotic arteries. Infection of 
vascular endothelial cells with T. gondii tachyzoites provide an 
additional source of Cat that are superimposing on similar enzymes 
already present in host cells, because the parasite expresses few 
members of the cathepsins, such as CatL-like, CatB-like, and CatC-
like proteases. Finally, vitamin D exerted beneficial effects in both 
atherosclerosis and T. gondii infection, especially that it improved 
host immunity and decreased proliferation of T. gondii tachyzoites in 
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macrophages and reduced tissue pathology caused by the pathogen. 
Because the parasite is widely disseminated in animals and humans, 
it seems that latent chronic toxoplasmosis play a critical role in the 
pathogenesis of atherosclerosis.
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INTRODUCTION
Atherosclerosis
Cardiovascular diseases (CVDs) are the leading cause of death 
worldwide, accounting approximately 17.3 million deaths per year[1,2], 
and this number will probably increase to 23.3 million by 2030[3]. 
Atherosclerosis also is the main cause of death, and in Europe, 
cardiovascular disease, atherothrombosis, coronary artery disease and 
stroke account for over 4 million deaths per year[4]. 
    Atherosclerosis is a chronic, progressive immune-inflammatory 
and fibroproliferative disease of medium and large sized arteries 
with three main components: (a) increased blood lipoprotein/
cholesterol and their disposition in the arterial wall; (b) an important 
TH1 type proinflammatory reaction; and (c) thrombogenic status[5]. 
The development of atheromatous plaques involves a number of 
cellular and molecular events including endothelial dysfunction, 
leukocyte recruitment and diapedesis, low-density lipoprotein (LDL) 
transcytosis and oxidation, intimal smooth muscle cells recruitment 
and proliferation, synthesis of extracellular matrix proteins, and 
accumulation of foamy macrophages along with interplay of various 
cytokines[6]. 
    Atherosclerotic process is initiated by the infiltration, retention and 
accumulation of LDL in the tunica intima of the arterial wall[7-9], and 
typically begins with endothelial cell dysfunction, mononuclear cell 
recruitment into vascular wall, and the differentiation of macrophages 
into foam cells[10,11]. Atherosclerotic lesions are characterized by 
progressive accumulation of lipids, macrophages, NK cells, T 
and B lymphocytes, smooth muscle cells, and fibroproliferative 
elements in the intima of arteries[12,13]. Functional analysis of different 
T-cell subsets role identified the TH1 responses as proatherogenic, 
whereas TH2 immune responses exert antiatherogenic actions[14,15]. 
Atherosclerosis is also associated with B-cell activation, and 
traditional T cell-driven B2 cells responses promote atherosclerosis, 
while innate B1 cells provide protective action through the secretion 
of naturally occurring antibodies[14,15]. 
    Several authors have hypothesized that the number of different 
pathogens, including T. gondii[16], may promote synergistic 
inflammatory responses that are capable of triggering and 
exacerbating atherosclerosis[17]. Lipopolysaccharide was found to be 
a potential contributor to the development of atherosclerotic plaque 
even at extremely low serum concentrations[18,19]. In susceptible 
individuals, the presence of a chronic infective stimulus, as well as 
a prolific generation of proinflammatory cytokines, may directly 

activate metabolic pathways, such as for example cholesterol 
esterification, leading to foam cell formation and development 
of atherosclerosis[20]. Macrophages and foam cells present in the 
evolving atherosclerotic lesion, secrete various proinflammatory 
cytokines, such as TNF-α, IFN-γ, IL-6, and chemokines, including 
ICAM-1 and VCAM-1. In response to enhanced production of 
proinflammatory cytokines, endothelial cells express high levels of 
leukocyte adhesion molecules on their surface, leading to further 
mononuclear cell recruitment and, hence, to development of a 
chronic inflammatory state[21-23].

T. gondii infection
Toxoplasmosis is one of the most frequent infections in both animals 
and humans affecting approximately 30-50% of the total world 
human population[24,25]. Ophthalmoimmunologists suggested that 
even some six billion people are chronically infected with T. gondii, 
with high seroprevalence in tropical areas and low prevalence in 
cold regions[26]. Seroprevalence increased markedly with age, to 
approximately 80-100% in persons aged 66-75 years[26,27]. At present, 
however, in immunocompetent individuals T. gondii infection is still 
believed to be asymptomatic[28,29], but a rapidly increasing body of 
literature strongly indicate that the parasite is slowly emerging as a 
global health threat[24,25,30]. 
    Three clonal strain types (I, II, and III) of T. gondii predominate 
worldwide[31]. In mice, the outcome of infection is highly dependent 
of the parasite genotype with type I strains being uniformly virulent, 
while types II and III are nonvirulent. Strains types II and III result in 
controlled infections that persist chronically[32]. The most prevalent in 
nature and frequent in humans infection with type II strain parasites 
stimulate NF-κB nuclear translocation and lead to an abnormal 
overproduction of proinflammatory TH1 cytokines, including IFN-γ, 
TNF-α, IL-1β, IL-12 and IL-6, that are typically protective[31-34]. 
Different strains of T. gondii produce different cytokines and cause 
different clinical entities[30], e.g. type I strain is more prevalent in 
ocular toxoplasmosis[30,35].
    The aim of the work was to review and critically analyze 
available literature data, especially focusing on the molecular 
pathomechanisms of both atherosclerosis and toxoplasmosis, and 
provide solid scientific documentation that latent chronic T. gondii 
infection probably play an essential role in triggering, development 
and progression of atherosclerosis in both animals and humans.

INCREASED SUSCEPTIBILITY OF VASCULAR 
ENDOTHELIAL CELLS TO INFECTION WITH T. 
gondii MAY BE A FREQUENT CAUSE OF THE 
ENDOTHELIAL DYSFUNCTION IN PATIENTS 
WITH ATHEROSCLEROSIS
Endothelial cells maintain the functional integrity of the vascular 
wall, and are involved in controling vascular wall permeability, the 
regulation of immune and inflammatory reactions, the modulation 
of blood flow and vascular resistance, and the maintenance of a non-
thrombogenic blood-tissue interface[36]. 
    Damage of vascular endothelial cells by proatherosclerotic risk 
factors, such as proinflammatory cytokines, oxidized proteins/
lipids, and/or hyperglycemia, leads to endothelial dysfunction[37,38]. 
Accelerated apoptosis of vascular endothelium cells[39] and an 
associated delay in cell cycle progression, affecting morphology 
and impairing function of the endothelial monolayer, are believed 
to be key bioevents for triggering and progression of micro- and 
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macrovascular diseases, including premature atherosclerosis and 
diabetic neuropathy[37-39].
    Endothelial cell dysfunction plays an important role in the 
process of atherosclerotic lesion formation by promoting leukocyte 
adhesion, increasing chemokine generation and cell permeability 
to lipids, enhancing LDL oxidation, stimulation of vascular smooth 
muscle cell proliferation and migration, and platelet activation[40]. 
Endothelial dysfunction is characterized by a reduction in the 
bioavailability of vasodilators, especially NO, and the increase in 
production of endothelium-derived contractile factors. There is a state 
of endothelial cell activation associated with increased generation 
of proinflammatory, proliferative, and procoagulant biofactors, all 
favoring triggering and development of atherogenesis[41]. Endothelial 
dysfunction may be caused by acute and/or chronic inflammation 
state and enhanced production of proinflammatory cytokines and free 
radicals ROS and RNI. Increased LDL oxidation causes enhanced 
expression of adhesion molecules in the endothelium, which 
facilitates monocyte infiltration of subendothelial space[42]. 
    It must be noted that flow-mediated dilation (FMD) (the most 
widely used non-invasive ultrasound method to assess endothelial 
function) derived using a proximal or distal cuff may serve as future 
cardiovascular events prediction[42a,42b]. Age- and sex-specific FMD 
data were early markers of atherosclerosis, and males had a lower 
FMD values than females, and FMD appeared to decline with age 
(except of pediatric population)[42c-42e]. Obstructive sleep apnea and 
hypertension also appeared to be early clinical markers of carotid 
atherosclerosis[42f,42g]. In addition, plasma pentraxin 3 (PTX3) was 
found to be a more sensitive predictor of endothelial dysfunction than 
serum high-sensitive C-reactive protein (hsCRP)[42h], at least in part 
because PTX3 overexpression in neutrophils was associated with 
intracellular ROS overproduction[42i]. 

Vascular endothelial cells are susceptible to infection with T. 
gondii tachyzoites 
The parasite is disseminating in the body as a Trojan horse in various 
eukaryotic cells, including endothelial cells and macrophages, 
and division rate of intracellular unprimed T. gondii tachyzoites in 
endothelial cells, monocyte-derived macrophages, peritoneal, or 
alveolar cells is rapid (Table 1)[43]. 
    In congenital toxoplasmosis, the parasites first invaded the 
umbilical vein endothelial cells and were then disseminated 
throughout the fetus[60,61]. Canedo-Solares et al[60] found that RH 
tachyzoites infected up to 19% human umbilical vein endothelial 
cells (HUVECs), while ME49 parasites invaded up to 63% human 
microvascular endotheial cell-1 line (HMEC-1). Both RH and Me49 
tachyzoites invaded 46 and 49% HUVECs and HMEC-1 cells, 
respectively. Reinvasion and formation of new parasitophorous 
vacuoles of infected cells was more frequent than invasion of 
noninfected cells. Thus, dissemination and vertical transmission of T. 
gondii appeared to be parasite strain type, host cell type/subtype and 
activation state- dependent. Replication speed of the parasite seemed 
to affect its virulence[60].
    Smith et al[62] found that retinal vascular endothelium cells have 
enhanced susceptibility to infection with T. gondii tachyzoites in 
comparison with aorta (55% more), umbilical vein (33%), and dermal 
endothelial cells (34% more), and tropism of different pathogens for 
particular cell types and/or specific tissue sites was a long-recognized 
biological phenomenon[62]. Free T. gondii tachyzoites had the ability 
to transmigrate a stimulated human retinal endothelium monolayer[63]. 
Tachyzoites crossed retinal endothelium assisted by intercellular 
adhesion molecule-1 (ICAM-1) (the cell surface IgG immunoglobin 
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Table 1 Division rate of intracellular T. gondii tachyzoites in primary 
human cells in vitro (acc. to Channon et al[43]; with own modification). 

Cell type

Parasite 
division 

rate 
Unprimed

IFN-γ 
primed Mechanism Refs

Hemopoietic

Lymphocyte S [43]

Neutrophil S [43-45]

Adherent monocyte S [45-50]

Nonadherent monocyte R R ROS; not TS [43,47]

Dendritic cell R [43]

Alveolar macrophage R S Partly TS [50]

Peritoneal macrophage R S [51]
Monocyte-derived 
macrophage R S ROS; not RNI [49-52]

Nonhemopoietic

Neuron S [53]

Foreskin fibroblast R S TS [54,55]
Umbilical vein endothelial 
cell R S TS or ROS [49,56]

Retinal pigment epithelial cell R S TS [57]

Fetal astrocyte R S RNI [53,58]

Fetal microglial cell R R [59]
R, rapid; S, slow; RNI, reactive nitrogen intermediates; ROS, reactive 
oxygen species; TS, tryptophan starvation.

superfamily member) in vitro, and ICAM-1 blockade significantly 
(by approximately 50%, p < 0.001) inhibited the parasite migration 
across stimulated human retinal, but not choroidal, vascular 
endothelium[63]. There has been interest in the heterogeneity of 
vascular endothelium, not only between arteries and venous types[64], 
but also between same type vessels located within different organs 
or within different tissues in the same organ[65,66]. An intracellular 
environment that is low in ROS or RNI and/or high in iron or 
tryptophan is known to facilitate tachyzoite proliferation[49,54,67]. 
Courret et al[68] tracked fluorescently labeled tachyzoite-infected 
CD11c-positive or CD11b-positive leukocytes from blood to brain, 
and showed that human dendritic cells (DCs) and monocytes 
were more permissive to infection with T. gondii tachyzoites than 
neutrophils or lymphocytes[43]. Moreover, transmigration of human 
DCs across retinal endothelium was augmented following infection 
with the parasite[69]. In this context, it must be emphasized that nearly 
1 million strokes occur in the US each year, and approximately 10-
15% can be attributed to intracranial atherosclerotic disease[70], and 
the infection of brain vascular endothelial cells with tachyzoites may 
play an important role in these clinical bioevents. 

Enhanced T. gondii adhesion to vascular endothelium during 
disturbed blood flow
Atherosclerosis disease occurs at sites of disturbed blood flow, 
typically in the curvature of vessels or at branching points[71-76]. 
Smooth laminar blood flow induces NO production, which has 
multiple anti-atherosclerotic functions, including suppressing 
adhesion molecule expression by endothelial cells, inhibiting platelet 
aggregation, and inhibition proinflammatory cytokine production[77]. 
It was demonstrated that T. gondii modulated the dynamics of human 
monocyte adhesion to vascular endothelium under fluidic shear 
stress[78]. T. gondii-infected primary human monocytes and THP-1 
cells exhibited altered adhesion dynamics compared with uninfected 
monocytes. Infected cells rolled at markedly higher velocities 
(2.5- to 4.6-fold) and over greater distances (2.6- to 4.8-fold), than 



uninfected monocytes, before firmly adhering[78]. Moreover, T. gondii 
tachyzoites adhered and glided on human vascular endothelium 
under shear stress conditions[79]. Compared to static conditions, shear 
stress enhanced T. gondii helical gliding, resulting in a significantly 
greater displacement, and increased the percentage of tachyzoites that 
invaded and sustained adhesion to vascular endothelium. It appeared 
that the parasite surface protein MIC2 contributed to initial adhesion 
but was not required for adhesion strengthening[79].

Increasing T. gondii infection percentage during human aging 
Endothelial cells are a replicative niche for entry of the parasite 
to the brain vasculature, and replication in and lysis of these cells 
precedes invasion of the central nervous system[80]. Vascular 
endothelial dysfunction occurs during the human aging process and 
is accompanied by deterioration in the balance between vasodilator 
and vasoconstriction substances produced by the endothelium[81]. 
This imbalance is mainly characterized by a progressive reduction 
of the bioavailability of NO and an increase in the production of 
COX-derived vasoconstrictor factors. Both circumstances are in turn 
related to an increased generation of ROS and RNI[81]. Interestingly, 
the percentage of individuals chronically infected with T. gondii 
also is increasing with age (Table 2) and this may, at least in part, 
be responsible for development of vascular endothelial dysfunction 
during aging.
    Proinflammatory and antiinflammatory cytokines acting as positive 
or inhibitory stimuli influence the development and maintenance of 
differentiated properties in the vasculature. In SMCs, the gene for 
the contractile protein, α-actin, is stimulated by TGF-β but inhibited 
by IFN-γ[82,83]. Similarly, TGF-β strongly promoted the synthesis of 
interstitial collagens types I and III by human SMCs, whereas IFN-γ 
powerfully inhibited their synthesis of collagen, as well as α-actin[84]. 
Vascular cells participate in and propagate the inflammatory response 
at sites of microbial challenge or pathological processes by generating 
large amounts of cytokines (Table 3). Both ECs and SMCs responded 
to stimulation with IL-1, TNF-α, or CD40 ligand by producing great 
quantities of IL-6[85], and in one study of 14,916 apparently healthy 
men who developed myocardial infarction, plasma IL-6 levels were 
significantly elevated as compared with control individuals who did 
not have heart problems[86]. 

Impaired nitric oxide (NO) production in endothelial dysfunction
Vascular endothelium-derived NO, a major mediator of endothelium-
dependent vasodilation, has important antiinflammatory and 
antithrombotic properties, such as inhibiting leukocyte adhesion, 
limiting platelet adhesion and aggregation, and the expression 
of PAI-1, a prothrombotic protein[88-90]. A common mechanism 
underlying endothelial dysfunction relates to inflammation and 
increased vascular production of ROS and RNI[90]. Endothelial cell 
tetrahydrobiopterin (BH4), a naturally occurring essential cofactor 
for several critical metabolic pathways, including the production of 
NO, is required for the maintenance of vascular function through 
enhanced NO production, and reduced levels of BH4 were associated 
with vascular dysfunction[76]. Stroes et al[88] demonstrated that BH4 
restored vascular endothelial function in patients with familial 
hypercholesterolemia which was associated with impaired NO 
activity. Recently, it was also however reported that although acute 
and short-term BH4 oral administration improved vascular endothelial 
function in patients with rheumatoid arthritis, the supplementation 
did not alter aortic stiffness (an independent risk factor for CVD[89]. 
The authors suggested that these two disturbances may occur in 
parallel and probably share common risk factor such as inflammation. 
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Table 2 Percentage of T. gondii positive individuals among 214 
nonpsychiatrically affected controls depending on age analyzed during 
a large epidemiologic study of 869 psychiatric patients (Hinze-Selch et 
al[27]).
Percent 
T. gondii 
positive

Age (yrs)
18-
20

21-
25

26-
30

31-
35

36-
40

41-
45

46-
50

51-
55

56-
60

61-
65

66-
70

71-
75

100 100

80 80 80

60 58 58 60

40 35 32 40 39 38

20 19

0
In the control individuals 45 yrs or younger recruited from the same 
geographical region as the psychiatric patients admitted to the hospital, 
serofrequency of T. gondii infection ranged between 20 and 40% without 
any systematic age effect, whereas in the individuals older than 45 yrs 
serofrequency systematically increased with age from about 40% to 
almost 100%[27].

Table 3 Regulation of human vascular endothelial and smooth muscle 
cells function by positive and inhibitory stimuli (acc. to Hansson et al[82]; 
with own modification).

Target Positive stimuli Inhibitory 
stimuli

SMC proliferation PDGF (TGF-β) IFN-γ (TGF-β)

SMC matrix/collagen TGF-β (IL-1, PDGF) IFN-γ

SMC contractile proteins TGF-β IFN-γ

Ig-type adhesion molecules IL-1, TNF-α, IFN-γ, CD40L

SMC NOS2 IL-1, TNF-α, IFN-γ TGF-β, IL-4

EC/SMC COX-2 IL-1, TNF-α, IFN-γ, CD40L

EC E-selectin IL-1, TNF-α, IFN-γ, CD40L

EC/SMC tissue factor IL-1, TNF-α, CD40L

EC/SMC MMPs IL-1, TNF-α, CD40L IFN-γ
EC, endothelial cell; Ig indicates immunoglobulin superfamily; CD40L, 
CD40 ligand (functional CD40L is expressed on human vascular ECs, 
SMCs, and macrophages; the activated T cells also express CD40L and 
in advanced human atherosclerotic plaques T cells constitute 10-20% of 
the cell population[53,55]); COX-2, cyclooxygenase 2; NOS2, nitric oxide 
synthase 2; MMPs, matrix metalloproteinases; PDGF, platelet-derived 
growth factor; SMC, smooth muscle cell.

Table 4 Intracellular pteridine levels in cultured and freshly isolated 
human umbilical vein endothelial cells (HUVEC) (acc. to Rosenkranz-
Weiss et al[91];with own modification).

HUVEC conditions

             Pteridine levels 

Biopterin Neopterin

pM per million cells

Cultured, passage 3-6

Control (4) < 2 < 2

TNF, IL-1β, and IFN-γ (4) 27.6 ± 6.7 a 24.6 ± 11 a

Cultured, primary (3) < 2 < 2

Freshly isolated (3) 31.7 ± 1.3 a ND
Results are mean ± SEM. a p < 0.05 vs control cultured HUVEC. Numbers 
in parentheses represent the number of samples. ND, not done.

Rosenkranz-Weiss et al[91] demonstrated that proinflammatory 
cytokines such as IFN-γ plus TNF or IL-1β enhanced NOS specific 
activity in cultured human endothelial cells by increasing intracellular 
BH4 levels (Table 4). 

Effect of other putative vascular cell pathogens on endothelial 
function
The first line of immune host defense is based on detection of 
pathogen-associated molecular patterns that evoke inflammatory and 
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toxic response[92,93]. Several studies suggested a role for Chlamydia 
pneumoniae (CP) in atherosclerosis[21]. For example, HSP60 of 
this microbe resembles human HSP60 and can elicit inflammatory 
response[94]. Chlamydial and human HSP60 induced TNF-α and 
MMP production by macrophages[95] and stimulated E-selectin, 
ICAM-1, and VCAM-1 expression on endothelial cells[94]. HSP60 
also markedly enhanced IL-6 production by endothelial and smooth 
muscle cells, and macrophages[94]. Another putative vascular 
pathogen, cytomegalovirus (CMV), encoded a chemokine receptor 
that rendered infected smooth muscle cells susceptible to CC 
chemokine-induced migration[96]. 
    Several authors demonstrated the relationship between the 
seropositivity to CP, HSV-1 and 2, HCMV, HAV, HP, EBV, and 
atherosclerosis/coronary artery disease[97-101]. Recently, it was also 
suggested that more infectious agents rather than any single pathogen 
may be involved in the development of atherosclerosis and the 
subsequent cardiovascular events because the proatherogenic effect 
of each infectious organism might be amplified[1,102]. Specifically, 
in 86 patients with no angiographically significant CAD, Prasad et 
al[103] found a significant correlation between total infection burden 
to five investigated agents (CP, CMV, H. pylori, hepatitis A, and 
herpes simplex virus) and decreased intracoronary endothelium-
dependent vasodilation (p = 0.03). [Of note, the eventual presence 
of latent chronic T. gondii infection in these patients had not been 
investigated]. The inflammatory state can induce oxidative stress 
by enhancing the production of ROS in the vascular wall, therefore 
contributing to the progression and destabilization of atherosclerotic 
plaque and consequently to CADs[104]. Key process in the 
development of atherosclerosis is LDL oxidation and accumulation 
in vascular cells, promoting foam cell formation, as well as increased 
secretion of mediators of inflammation, including IL-1, IL-6 and 
TNF-α[104].
    On the other hand, Khairy et al[105] found lack of association 
between chronic infection with CP, CMV, EBV, HP, or pathogen 
burden, and endothelial function in 65 male individuals, aged 
20 to 45 yrs (mean age = 29.3 ± 5.5 yrs), with no risk or known 
coronary artery disease(CAD), suggesting that these agents were 
not implicated as early etiologic triggers in the pathophysiology 
of CAD (Table 5). Endothelial function was determined by flow-
mediated brachial artery vasodilation and seroprevalence values 
were 65.1%, 34.9%, 88.9%, and 14.3%, for CP, CMV, EBV, and HP, 
respectively[105], consistent with the earlier values reported in young 
patient populations[106,107], and the coexistence of these infections has 
been well described[108].
    In summary, latent chronic T. gondii infection may be a frequent 
cause of vascular endothelial cell dysfunction because the parasite 
attacks all eukaryotic cells and endothelium cells have enhanced 
susceptibility to infection with T. gondii tachyzoites with rapid 
division rate. Increase of vascular endothelial dysfunction occurs 
during the human aging process and it was found that the percentage 
of individuals chronically infected with T. gondii also is increasing 
with age. Human studies showed that the infection burden such 
as H. pylori, CMV, and EBV, decreased endothelium-dependent 
vasodilation, but eventual additional latent chronic T. gondii infection 
in these participants had not been investigated.

OXIDATIVE STRESS CHARACTERISTIC FOR 
ATHEROSCLEROSIS MAY BE CAUSED BY 
LATENT CHRONIC T. gondii INFECTION
Chronic inflammation (innate immunity-associated) may trigger 

Table 5 Flow-mediated brachial artery vasodilation caused by chronic 
low-grade infection with Chlamydia pneumoniae, Ebstein-Barr virus, 
cytomegalovirus, and H. pylori, associated with decreased endothelial 
function in seropositive healthy young men (acc. to Khairy et al 

[105]; with own modification).

Infectious agent FMD 
Seropositive

FMD 
Seronegative

Parameter 
estimate 
95% CI

P

Chlamydia 
pneumoniae 9.8 ± 4.5 8.5 ± 4.5 0.280 (-2.053, 2.613) 0.8151

Ebstein-Barr 
virus 9.5 ± 4.5 8.1 ± 4.2 0.159 (-0.432, 0.750) 0.6006

Cytomegalovirus 9.0 ± 4.5 9.5 ± 4.5 -0.806 (-3.403, 1.789) 0.5452

H. pylori 13.6 ± 4.4 8.7 ± 4.1 2.888 (-0.354, 6.129) 0.0888

FMD, flow-mediated brachial dilation; CI, confidence interval.

initial events that can lead to atherosclerotic cardiovascular 
disease[109]. Early stages of chronic inflammation and onset of 
atherosclerosis may be evident in embryonic life[110], and be 
perpetuated by classic atherosclerosis environmental risk factors, 
including T. gondii infection. Lipid peroxidation and formation of 
oxLDL are pivotal processes in the development of atherosclerosis 
that represent a crucial proinflammatory stimulus[111,112]. 
Atherosclerosis and autoimmune diseases have a number of 
pathogenic similarities[113], and autoimmunity plays an essential role 
in pathophysiology of atherogenesis. Atherosclerosis triggers the 
production of autoantibodies against substances such oxLDL[113].
    Oxidation of LDL result in the formation of reactive aldehyde 
products such as malondialdehyde (MDA), 4-hydroxynonenal (4-
HNE), or 1-palmitoyl-2-oxovaleroyl phosphatidylcholine[114]. MDA-
modified LDL is commonly utilized as an indicator for oxLDL, 
because MDA is the most abundant aldehyde arising from lipid 
peroxidation. Recently, Matsuo et al[115] demonstrated that circulating 
MDA-LDL concentrations were associated with the presence of 
thin-cap fibroatheromas in patients with coronary artery disease[115]. 
Bardag-Gorce et al[116] showed that 4-HNE inhibited the proteasome 
activity and that the proteasome was unable to degrade proteins 
heavily modified by 4-HNE. Ultrastructurally, 4-HNE-treated cells 
displayed extensive vacuole formation, pinocytic body formation, 
crescent-shaped phagophores, and multilamellar vesicles[117]. In 
addition, 7-ketocholesterol present in oxLDL, not only triggers 
oxidative damage and protein-4-HNE modification but also extensive 
vacuolization in SMCs[118]. OxLDL is also a potent chemoattractant 
and induces the secretion of macrophage-chemotactic protein-1 by 
endothelial cells[119-121]. 
    Acute or persistent oxidative stress results in an intracellular 
increase of ROS that damage the lysosomal membrane. When 
oxidative injury overcomes the cellular defenses, cells probably die 
via apoptosis[117,122]. The production of ROS and RNI (peroxynitrite, 
i.e. ONOO-, a potent oxidant and nitrating agent that can cause 
formation of several lipid oxidation products including MDA, lipid 
peroxides and lipid hydroxides, and oxysterols, as well as interaction 
iron and copper species[123-125] has been implicated in atherosclerosis 
principally as means of damaging LDL[126-128]. Oxidation of lipids 
present in LDL generate a broad range of reactive products such as 
the above-mentioned aldehydes that are capable of reacting with 
lysine residues[123]. Specifically, the extent of oxidation of linoleic 
acid measured in atherosclerotic lesion is approximately 20% and is 
similar to in vitro studies using copper-mediated LDL oxidation[129]. 
Antibodies directed to specific oxidized lipid-protein adducts cross 
react with material in atherosclerosis, and titers of autoantibodies 
to oxLDL are positively correlated with the progression of 
atherosclerotic lesions in humans[130]. 
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Latent chronic T. gondii infection
Several studies suggested that infectious pathogens, including 
T. gondii, H. pylori, Chlamydia peumoniae, and Enterococcus 
fecalis[131-133] may be responsible for inducing oxidative stress 
and triggering primary atherosclerotic lesions in both animals 
and humans[131,134,135]. T. gondii infection may be at least partly 
responsible for development of these abnormalities because Yang 
et al[136] showed that in mice injected intraperitoneally with 2.5 
× 103 T. gondii tachyzoites, the serum level of the oxygen free 
radicals (NO+, *OH, O2

-) increased along with the days of infection, 
and superoxide dismutase concentration reached a peak on the 3rd 
day of the infection. It was documented that oxidative stress with 
markedly increased serum MDA and decreased glutathione levels 
is characteristic for chickens orally infected with tissue cysts of the 
protozoan[133] (Tables 6 and 7), and T. gondii seropositive patients 
(Table 8)[137, 138]. 
    Al-Kennany[133] demonstrated a lipid peroxidation status in 
the aortic and heart tissue of T. gondii-infected broiler chickens 
with a significant increase in MDA level and a marked decrease 
in glutathione concentrations in these tissues. Histopathological 
examination revealed that aortic lesions had thickening of the wall 
due to accumulation of lipid vacuoles in tunica media extending 
towards tunica intima, associated with proliferation and hypertrophy 
of VSMCs, hypertrophy of endothelial cells with invasion of 
tachyzoites in these cells[133]. Some aortic sections revealed 
accumulation of tachyzoites in the cytoplasm of VSMCs, well as an 
accumulation of lipid vacuole concomitant with foamy cells in both 
tunica media and intima with fragmentation of elastic lamellae and 
infiltration of lymphocytes[133] (Table 6). 
    In asymptomatic T. gondii-seropositive blood donors, oxidative 
stress and immunosuppression have been demonstrated[139,140]. 
Foroutan-Rad et al[141] searched in 7 electronic databases information 
on frequency of toxoplasmosis in blood donors, and in total 43 
records which included 20,964 donors from 1980 to 2015, they 
found that the overall weighted prevalence of exposure was 33% 
(95% CI, 28-39%). The highest and the lowest seroprevalences of 
toxoplasmosis were observed in Africa (46%; 95 CI, 14-78%) and in 
Asia (29%; 95% CI, 23-35%), respectively. Brazil and Ethiopia were 
identified as countries with high anti-T. gondii seroprevalence[141]. 
    Elsheikha et al[139] found in a group of 260 blood donors that the 
plasma concentration of MDA was significantly higher and activity 
of glutathione peroxidase and level of tocopherol (α, γ and s) 
fractions (p < 0.001) were lower in T. gondii- IgG seropositive than 
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Table 6  Levels  of  malondialdehyde (MDA) and glutathione 
( G S H )  i n  a o r t a  a n d  h e a r t  o f  b r o i l e r  c h i c k e n s  i n f e c t e d  
intraperitoneally with 50 tissue cysts of T. gondii (acc. to Al-Kennany[133]; 
with own modification).

Groups

MDA  
(nM per gm 
wet tissue) 

Aorta

Heart

GSH  
(mM per gm 
wet tissue) 

Aorta

Heart

Controls 125  ± 1.05 105 ± 0.33 0.622 ± 0.022 a 0.773 ± 0.026

Infected 529.8 ± 2.32 a 455.3 ± 0.43 a 0.273 ± 0.01 0.421 ± 0.031
Results are expressed as means ± SD of 10 broiler chickens per group. 
a Significant differences at p ≤ 0.05.

Table 7 Plasma lipid profile of broiler chickens infected intraperitoneally with 50 tissue cysts of T. gondii (acc. to Al-Kennany[25] with own modification).

Groups Total cholesterol mg/dL Triglycerides mg/dL HDL-C mg/dL LDL-C mg/dL VLDL-C mg/dL Atherogenic index

Controls 117 ± 0.23 105.3 ± 1.28 42.06 ± 2.72 a 53.88 ± 1.25 21.06 ± 0.02 2.78 ± 0.12

Infected 478 ± 0.30 a 192.3 ± 0.48 a 33.36 ± 1.04 406.81 ± 1.04 a 38.49 ± 1.28 a 14.17 ± 0.81 a

Results are expressed as means ± SD of 10 broiler chickens per group. a Significant differences at p ≤ 0.05. HDL-C, high density lipoprotein-cholesterol; 
LDL-C, low density lipoprotein-cholesterol; VLDL-C, very low density lipoprotein-cholesterol.

Table 8 Serum glutathione, malondialdehyde, and NO concentrations in 
T. gondii-seropositive patients and healthy controls (acc. to Karaman et 
al[137]; with own modification.

Bioparameter Group No of 
participants

Serum levels
(mean ± SD) P values

Glutathione
Patients 37 3.96 ± 0.10 0.001
Controls 40 10.37 ± 0.13

Malondialdehyde
Patients 37 41.32 ± 2.05 0.001
Controls 40 9.18 ± 1.21

NO
Patients 37 47.47 ± 1.00 0.001
Controls 40 39.18 ± 1.29

Results statistically significant at p < 0.05. Serum glutathione and NO 
levels are expressed as μM, and malondialdehyde concentrations 
represent nM. 

in seronegative blood donors. The authors suggested that there was a 
degradation of their antioxidant enzymes caused by oxidative stress 
induced by increased free radicals attributed to T. gondii infection. 
It must be noted that glutathione induces egress of the parasite from 
infected cells by activating a T. gondii-secreted apyrase (nucleoside 
triphosphate hydrolase) in the parasite vacuole resulting in a rapid 
depletion of host cell ATP[142].
    Interestingly, Jafari et al[143] in the case-control study demonstrated 
that women were more sensitive to the effects of T. gondii infection 
on oxidative stress induction compared to men. Overall, 75 (50%) 
of 150 participants 20-50 yrs old were seropositive for anti-T. gondii 
IgG antibodies, including 23 (15.33%) men and 52 (34.66%) women; 
the control group of participants consisted of 75 individuals (32 men 
and 43 women) with serum anti-T. gondii IgG negative samples. 
Serum catalase activity (converts H202 to H20) was significanlty 
increased in men of the case group (p = 0.006), while it was 
decreased in women of this group, as compared with controls (p = 
0.043). Catalase activity in women of the case group was markedly 
lower than that of men (p = 0.003)[143]. Effects of T. gondii infection 
on serum glutathione and MDA levels in the case and control groups 
were presented in Table 9. 
    Vegeto et al[144] showed that estrogens may block iNOS activity 
and accumulation in LPS-activated microglia cells, as well as 
reduce the accumulation of nitrites and nitrates consequent to 
various inflammatory stimuli, and thus play a protective role against 
neurodegeneration. 
    Oxidative stress plays an important role also in the pathogenesis 
of neurodegenerative diseases. Dincel and Atmaca[145] demonstrated 
in the brain tissue of mice infected with ME49 strain T. gondii that 

Table 9 Effects  of T. gondii infection on serum glutathione (GSH; an 
antioxidant) and malondialdehyde (MDA - a lipid peroxidation marker) 
levels in anti-toxoplasma IgG-seropositive participants and IgG-
seronegative controls (acc. to Jaffari et al[143]; with own modification).

Parameters Controls T. gondii IgG- seropositive 
participants

Men 
(n = 43)

Women 
(n = 32)

Men 
(n = 23)

Women 
(n=52)

Weight (kg) 36.744 ±1.185 34.437±1.382 39.565±1.415 36.077±0.779

GSH (nM protein) 0.838±0.059 0.891±0.046 0.757±0.075 0.622±0.053 a

MDA (nM protein) 1.669±0.099 1.902±0.086 1.832±0.107 2.305±0.095 b,c

Results are mean ± SE. a p = 0.032 and b p = 0.007 vs the controls; c p = 0.028 
vs infected men. 



the levels of glutathione reductase (p < 0.005) and neuron specific 
enolase (p < 0.001) expression markedly increased, while Cu/Zn 
superoxide dismutase activity decreased (p < 0.001) compared to the 
noninfected animals. Moreover, intense staining for 8-hydroxy-2’-
deoxyguanosine (a critical biomarker of oxidative stress) (p < 0.05) 
was observed both in the nucleus and the cytoplasm of neurons and 
glial cells that underwent oxidative stress[145].
    Together, there is the vicious circle between oxidative stress and 
inflammation in atherosclerosis[104]. Latent chronic T. gondii infection 
play an important role in inducing local/systemic inflammation and 
oxidative stress in both animals and humans. Since the parasite 
attacks almost all nucleated cells in mammals and slowly is becoming 
a global hazard[30], it seems that it have a pivotal role in development 
of atherosclerosis. 

IMPORTANT ROLE OF T. gondii INFECTION 
IN THE PATHOGENESIS OF ATHEROSCLE-
ROSIS 
The parasite has the autonomous capacity to synthesize 
phospholipids, and also readily scavenges precursors of the lipids 
from the host cell[146-148]. T. gondii is unable to synthesize sterol and 
acquires cholesterol from the host LDL receptor (LDLR) pathway[149]. 
LDLs are internalized by the LDLR or scavenger receptors and 
delivered to the late endosomes/lysosomes for hydrolysis[148]. 
Deposition of excess cellular cholesterol in the form of CEs is 
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Table 10 Uptake of cholesterol by mouse embryonic fibroblasts 
(MEF) ACAT1-/- cells transfected with TgACAT1 or TgACAT2, and 
incorporation into cholesteryl esters (acc. to Lige et al[153]; with own 
modification).
MEF ACAT-/- 

transfected with
Cholesterol uptake 

(cpm x µg cell protein-1)
Cholesterol ester levels 
(cpm x µg cell protein-1)

Vector 3991 ± 601 ND

TgACAT1 4003 ± 510 898 ± 65 a

TgACAT2 3758 ± 436 1514 ± 110 b

The results are mean values ± SD from three incubations (“a” vs “b” is 
statistically significant, p < 0.01). MEF ACAT-/- were transfected with 
vector alone, or plasmids containing either TgACAT1 or TgACAT2. Cells 
were then incubated with [3H]cholesterol-LDL. Cholesterol  uptake was 
monitored by scintillation counting. Cholesterol ester detection was 
performed by thin-layer chromatography analysis. Cpm, counts per 
minute; ND, not detected. 

Table 11 Comparison of  free fatty acids (FFAs) uptake by T. gondii and 
CHO cells (acc. to Quittnat et al[156]; with own modification).

Oleate Palmitate Stearate Linoleate Arachidonate

T. gondii 780 ± 99 1833 ± 105 a   810 ± 69   750 ± 91   767 ± 77

CHO cells 1230 ±142 1156 ± 101 1467 ± 151 1350 ± 98 1058 ± 103
Results are means ± SD of four separate experiments. Differences 
between values of the uptake of palmitate vs other FFAs in T. gondii 
are statistically significant. a p < 0.005. CHO, Chinese hamster ovary. 
Extracellular parasites or CHO cells were incubated for 1 h at  37℃ with 
the indicated 0.3 mM radioactive FFAs. After washing, the total FFAs 
uptake was determined by measuring the cell-associated radioactivity 
and expressed in nM per mg cell protein/h. 

Table 12 Fatty acid specificity for triacylglyceride (TAG) synthesis in T. gondii (acc. to Quittnat et al[156]; with own modification).
Relative activities 
[3H]oleate + oleate [3H]oleate + palmitate [3H]oleate + stearate [3H]oleate + linoleate [3H]oleate + arachidonate

T. gondii 1.00 0.18 0.69 0.50 0.61
CHO cells 1.00 0.52 0.62 0.55 0.59
The values expressed as relative activities, are means of three separate experiments. CHO, Chinese hamster ovary. Extracellular T. gondii and CHO cells 
were incubated for 1 h at 37℃ with 10 nM of radioactive oleate (~50,000 dpm per nM) previously mixed with 0.3 mM of the indicated unlabeled FFAs to 
measure its incorporation into TAG. The production of TAG with oleic acid alone was 45,950 cpm per mg cell protein for T. gondii. 

catalyzed by the resident ACAT, leading to production of lipid 
bodies[150,151]. 
    Sakashita et al[152] demonstrated that immature human macrophages 
expressed only ACAT1, but the fully differentiated macrophages 
expressed both ACAT1 and ACAT2, and revealed the presence 
of these two enzymes mRNAs in human atherosclerotic aorta. 
Immunohistochemical study indicated that in the atherosclerotic 
aorta all macrophages expressed ACAT1, while approximately 
70-80% of the cells also expressed ACAT2. It was suggested that 
in atherosclerotic plaque, the ability of macrophage foam cell 
transformation may be enhanced by the dual expression of ACAT1 
and ACAT2[152]. It must be emphasized that the marked expression 
of these two enzymes present in macrophages may be further 
augmented by the superimposing TgACAT1 and TgACAT2 activities 
available in the cells infected with T. gondii (Table 10)[153]. 
    T. gondii expresses two CE-synthesizing enzymes TgACAT1 
and TgACAT2 that localize to the parasite ER, and TgACAT2 
shares 56% identity with TgACAT1[153,154]. Both these enzymes 
contribute to the CEs formation for storage in lipid bodies, 
and while TgACAT1 preferentially utilizes palmitoyl-CoA, 
TgACAT2 produces more CEs because it has a broader fatty 
acid specificity[154-156]. The parasite was competent to synthesize 
CEs using host cell-derived cholesterol and fatty acid, and the 
production was proportional to the amount of lipid taken up by the 
protozoan over the time[154,157]. It was demonstrated in vitro that 
perfusion of LDL in the culture medium lead to massive uptake of 
cholesterol by the parasite, suggestive of uncontrolled uptake of 
this lipid by T. gondii[153]. It should be emphasized that ACAT and 
CEs play a crucial role in replication of the pathogen[157].
    It appeared that several FFAs were incorporated into parasite 
CE but nearly twofold higher incorporation of palmitate into CE 
as compared with oleate, arachidonate, stearate, and linoleate was 
observed[154,156] (Tables 11 and 12). The preferential palmitate 
incorporation specificity by T. gondii acyl-CoA: diacylglycerol 
acyltransferase (TgDGAT1) has already been found also for 
triacylglycerol synthesis in the parasite[158] (triacylglycerols are 
quantitatively the most important storage form of energy for 
eukaryotic cells), and TgDGAT1 is an integral membrane protein 
localized to the parasite cortical and perinuclear endoplasmic 
reticulum[156]. The protozoan was able to take up both oleate and 
diacylglycerol and incorporate them into the triacylglycerol fraction, 
and oleate was incorporated into diacylglycerol (Table 13).

Table 13  Lipid acquisit ion and substrate incorporation into 
n-acylglycerides of T. gondii (acc. to Quittnat et al [156]; with own 
modification).

Lipid uptake (cpm 
per µg cell protein)

Lipid synthesis (cpm 
per µg cell protein) DAG TAG

[3H]Oleate 78589 ± 190 10444 ± 1874 32400 ± 3880

[14C]DAG 58430 ± 3209 39650 ± 4705 23664 ± 2099
The values are means ± SD of three separate experiments. DAG, 
diacylglycerol; TAG,  triacylglycerol; cpm, counts per minute. 
Extracellular T. gondii were incubated for 1 h at 37℃ with radioactive 
oleate or DAG before measurement of total lipid associated to parasites 
and lipid incorporation into DAG or TAG.
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    In atherosclerotic patients as well as during chronic latent T. 
gondii infection there is an increased production of proinflammatory 
cytokines that enhances both ACAT1and ACAT2 activity 
in the infected host liver hepatocytes, intestine cells, and 
macrophages[159-163]. The enhanced activity of these enzymes will 
thus be overlapping with TgACAT1 and TgACAT2 activities in the 
intracellular tachyzoites. As a result, there will be an accumulation 
of a marked surplus of these enzymes activity finally leading to 
a more efficacious generation of foam cells, and development of 
several liver and/or intestine abnormalities, such as steatohepatitis 
or clear cell colitis[164,165]. These cells morphologically represent 
cholesterol ester-laden macrophages/foam cells, because the number 
and the size of lipid bodies in T. gondii vary between the different 
parasite developmental stages (tachyzoites, bradyzoites, oocysts), 
environmental conditions[153,166], infected cells/tissues of the host, and 
intensity of oxidative stress associated with the infection.
    Atherosclerosis was found to be more common in children with 
fatty liver (30%) than in those without this abnormality (19%)[167,168]. 
Nonalcoholic fatty liver disease (NAFLD) is the most common of 
chronic liver disease in Western countries that affects about 20-
30% of the general population and is closely related to oxidative 
stress and insulin resistance[164,169-171]. The prevalence of NAFLD 
was about 3-10% in lean children, and about 53% in obese pediatric 
population[172]. Its histologically proven prevalence in children in the 
US (as found at autopsy after accidents) ranges from 9.6% in normal-
weight individuals up to 38% in obese ones[173]. This clinical entity 
includes a wide spectrum of liver diseases ranging from steatosis 
alone, to nonalcoholic steatohepatitis, which may progress to liver 
fibrosis and cirrhosis[170]. NAFLD is associated with coronary artery 
disease and subclinical atherosclerosis, emphasizing the role of 
chronic inflammation in the pathogenesis of atherosclerosis[171]. 
Autopsy findings in 817 children who died of external causes 
showed that fatty liver was present in 15% of the children, mild 
atherosclerosis in 21%, and moderate to severe atherosclerosis was 
observed in 2%[172]. These findings emphasize the importance of 
latent chronic T. gondii infection as a potential but so far neglected 
cause of atherosclerosis sometimes associated with unexplained 
liver damage and other clinical entities involving this organ, because 
this widely disseminated pathogen slowly becomes a global health 
hazard[30,164]. 
    In summary, it was demonstrated that ACAT and CEs play a 
crucial role in replication of T. gondii. Immature human macrophages 
expressed only ACAT1, but the fully differentiated macrophages 
expressed both ACAT1 and ACAT2, and revealed the presence 
of these two enzymes mRNAs in human atherosclerotic aorta. 
Moreover, immunohistochemical study indicated that in that 
aorta, all macrophages expressed ACAT1, while approximately 
70-80% of macrophages also expressed ACAT2. In congenital 
hyperlipidemic mice, ACAT2 was also present in lipid-laden cells of 
the atherosclerotic plaques. It was suggested that in atherosclerotic 
plaque, the ability of macrophage foam cell transformation may 
be augmented by the dual expression of ACAT1 and ACAT2. The 
marked expression of these two enzymes in macrophages may 
be further amplified by the TgACAT1 and TgACAT2 of T. gondii 
present in the infected host macrophages, finally leading to a more 
efficacious and faster building-up of atherosclerotic plaques. 

ACAT1 AND ACAT2 PLAY A CRUCIAL ROLE 
IN FOAM CELL FORMATION AND DEVEL-
OPMENT OF ATHEROSCLEROTIC PLAQUE. 

UNCONTROLLED UPTAKE OF CHOLESTEROL 
AND SYNTHESIS OF LIPIDS BY T. gondii IS 
DUE TO THE INTRACELLULAR REPLICATION 
OF THE PARASITE
Atherosclerosis
It is accepted that atherosclerosis involves chronic inflammatory 
reaction[175]. The accumulation of foamy transformed macrophages 
in the aortic intima is a pathological hallmark of the early phase of 
atherosclerosis[176,177]. The initial process of foam cell formation is 
migration of blood monocytes into the vascular wall followed by 
their differentiation into macrophages, and their conversion into 
foam cells, which are characterized by intracellular accumulation 
of cholesteryl esters (CEs)[178]. In the later stages of atherosclerosis, 
foam cell undergo apoptosis and secondary necrosis, which causes 
atherosclerotic plaque rupture[176]. Complex fibrotic plaques are 
produced as a result of lysis of foam cells, migration and proliferation 
of vascular smooth muscle cells (VSMCs), and persistent 
inflammatory response[161]. 
    Foamy macrophages bearing numerous lipid droplets are mainly 
composed of CEs and triglycerides[6]. These cells secrete various 
biologically active molecules and promote vascular remodeling with 
lipid deposition, eventually resulting in pathological vascular events, 
including myocardial infarction and cerebral ischemia[176,179,180]. 
Low density lipoprotein (LDL) is the major cholesterol carrier in 
the blood and continuous uptake of native and denaturated LDLs 
by macrophages occurs in the subendothelial layer of the arterial 
intima[179]. 

Important role of ACAT1 in foam cells formation and 
development of atherosclerotic lesion
Three enzymes are thought to be responsible for the synthesis of 
plasma CEs, i.e. ACAT1, ACAT2[176,181,182], and lectin: cholesterol 
acyltransferase (LCAT), a glycoprotein that is secreted by the liver 
into the blood[183]. In animals, ACAT1 and ACAT2 were united with 
LCAT as known sources of CEs[184]. In humans, ACAT2 seems to 
play a much more extensive role than ACAT1 in production of CEs 
by macrophages because TgACAT2 induced during intracellular 
T. gondii infection provide additional enzyme activity that further 
enhances biogenesis of CEs in the host cells[153,154]. 
    ACAT1 is an essential enzyme in intracellular cholesterol 
homeostasis and a transmembrane protein localized mainly in the 
rough endoplasmic reticulum (ER) and perinuclear region that 
covalently joins excess free cholesterol with fatty acyl-CoA molecule, 
typically oleoyl-CoA, to form CEs[185]. ACAT1 and neutral cholesteryl 
ester hydrolase regulated cholesterol esterification[2]. Esterification 
causes cholesterol to be moved out of the cell membrane into the 
cytoplasm where it is stored as lipid droplets[184]. The build-up of 
free cholesterol in membranes can cause membrane deformation, 
leading to cellular toxicity[186,187]. The presence of ACAT1 in the cell 
membrane limits the plasma membrane cholesterol concentration by 
inducing cytosolic lipid droplets formation. When cholesterol is in 
overabundance, such as in arterial macrophages during atherogenesis, 
ACAT1 may promote enough lipid storage to induce conversion of 
macrophages to lipid-laden foam cells[184]. 
    ACAT1is a dominant isoenzyme in monocyte-macrophages[181,188], 
which plays an essential role in atherosclerotic plaque formation 
as well as in oxLDL-induced VSMC foam cell build-up[189,190]. 
Expression of ACAT1 and ACAT2 significantly increased after 
differentiation of monocytes to macrophages[152,191]. In macrophages 
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walls may be enhanced by pre-existing increased serum TGF-β1 
concentrations[209]. (Nb. TGF-β expression in human retinal pigment 
epithelial cells enhanced by T. gondii may play an important role in 
the pathogenesis of retinochoroiditis[210]). Infection with Chlamydia 
pneumoniae (a pathogen isolated from coronary and carotid 
atheromatous plaques which plays an important role in cardiovascular 
disease[211], hides inside apoptotic neutrophils to silently infect and 
propagate in macrophages[212]) also induced macrophage-derived 
foam cell formation by upregulating ACAT1 expression and thus 
disturbed cholesterol homeostasis in these cells[213,214]. At present, one 
cannot exclude also a pathogenic role of Helicobacter cinaedi (one of 
the the most common enterohepatic Helicobacter species that causes 
bacteriemia in humans) infection in promoting atherosclerosis by 
involving macrophage-driven proinflamatory responses associated 
with TLR2 and TLR4 signaling, and causing foam cell formation[215].
    Interestingly, Zhao et al[216] showed that hydrogen sulfide (H2S), 
a novel endogenous gasotransmitter and a well-known toxic gas 
with a characteristic smell of rotten eggs present also in drinking 
waters of wells and thermal spring and mineral waters, inhibited 
human monocyte-derived macrophage foam cell formation by 
suppressing ACAT1 production. H2S shares similar features 
with NO, and CO, and play important vasodilatatory and anti-
atherosclerotic roles[216-218]. These cytoprotective actions may at least 
partly explain H2S beneficial effects in slowing down progression of 
experimental Alzheimer’s disease[219], as well as improving health 
in major cardiovascular diseases[220]. It was recently suggested that 
atherosclerosis and Alzheimer are diseases with a common cause[221], 
and it seems that chronic T. gondii infection may be at least in part 
responsible for this causal relationship[222,223].

Crucial role of ACAT2 in foam cells formation and development 
of atherosclerotic lesion 
ACAT2 is expressed only in intestinal enterocytes, hepatocytes (where 
ACAT1 is silent[224]), and in macrophages[152,225]. Parini et al[226] found 
that ACAT2 protein expression was localized to hepatocytes as 
the major cholesterol-esterifying enzyme in human liver, whereas 
ACAT1 was present in Kupfer cells only. Human fetal liver (20 
weeks post-conception) had abundance of ACAT2 mRNA[227], and 
in congenital hyperlipidemic mice ACAT2 was present in lipid-
laden cells of the atherosclerotic plaques[152]. It must be noted that the 
ACAT2 protein expressed in Chinese hamster ovary cell had a half-
life > 6 hrs, whereas the ACAT1 protein had a t1/2 of only @ 20-30 
min, suggesting greater stability of ACAT2[226]. 
    ACAT2 participates in: (a) the enterohepatic recirculation 
of cholesterol, as revealed by the reduced intestinal absorption 
efficiency in ACAT2-deficient mice[228]; (b) in regulation of 
cholesterol metabolism within the hepatocyte; and (c) in CE secretion 
and transport in plasma lipoproteins[184]. 
    ACAT2 functions in free cholesterol esterification during 
cholesterol absorption in the enterocyte[224]. This is a key 
cholesterol esterification enzyme necessary for the development 
of hypercholesterolemia[228]. Most of the absorbed cholesterol is 
esterified by ACAT2 for incorporation into chylomicron particles, 
so that 75-80% of newly absorbed cholesterol transported into the 
body in chylomicrons as CE[229]. The metabolism of chylomicrons 
in the circulation leads to the formation of remnant lipoproteins that 
retain the CE, which is ultimately delivered to the hepatocytes in the 
liver[224]. The LCAT derived CE of HDL is removed from plasma 
primarily by the liver through selective CE uptake[230] and by whole 
HDL particle uptake[231]. Normally, more than 70% of the cholesterol 
in LDL and VLDL is esterified, and two enzymes ACAT2 and 
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and other cell types, ACAT1 overexpression was involved in 
forming CEs as lipid droplets[191,192], present in the cell cytoplasm[177], 
and finally in foam cell formation[193,194]. Rong et al[195] found an 
increase in ACAT1 activity after cholesterol loading also in both 
human and rat aortic SMCs, but ACAT2 was not found to be 
expressed by arterial SMCs[152]. TLR4 has a critical role in triggering 
inflammation[189] and participates in VSMC activation[196]. Unlike the 
macrophages, VSMCs do not have the proinflammatory properties 
normally, however, in many atherogenic conditions, inflammatory 
reaction often was present also in these cells[197]. It was demonstrated 
that TLR4-mediated inflammation has been activated by oxLDL in 
VSMCs, which in turn upregulated ACAT1 expression and finally 
contributed to VSMC foam cell formation required in atherosclerotic 
plaque building[189]. 
    Sakashita et al[198] demonstrated that in normal human tissues 
ACAT1 was detected in macrophages, smooth muscle cells, 
antigen-presenting cells, steroid hormone-producing cells, neurons, 
myenteric ganglia, cardiomyocytes, hepatocytes, mesothelial and 
other cells, follicles, tubules. The immunohistochemical reactivities 
were particularly prominent in the macrophages, steroid hormone-
producing cells, followed by hepatocytes, and intestinal epithelia. 
In cultured human macrophages ACAT1 was located mainly in the 
tubular ER, and on cholesterol loading, about 30 to 40% of the total 
immunoreactivity appeared in small-sized vesicles enriched in 78 kD 
glucose-regulated protein[198]. 
    Miyazaki et al[191] examined human atherosclerotic lesions using 
immunohistochemical staining and showed that in early lesions of the 
human aorta, mononuclear cells expressed only limited ACAT1. In 
contrast, the same ACAT1 antibodies stained much more intensely in 
fatty streak lesions, particularly in areas that contained macrophages 
with foamy transformation. It was demonstrated that monocytes/
macrophages were the major cellular component of the ACAT1-
expressing cells in atherosclerotic lesions[191]. In animal experiments, 
cholesterol feeding increased ACAT1 mRNAs by 2- to 3-fold in 
mouse and rabbit livers and in rabbit aortas[199,200], respectively, 
suggesting that the ACAT1 message level may be regulated in a 
tissue specific manner[191]. 

Factors affecting ACAT1 upregulation or downregulation
Cheng et al[201] showed that cholesterol itself served as an activator 
of ACAT1, besides serving as a substrate. The biosignals that 
upregulated the expressions of ACAT1 in monocyte-derived 
macrophages included IFN-γ (a proatherogenic cytokine), 
dexamethasone, and vitamin D[201-203]. On the other hand, a synthetic 
retinoid Am80 (a specific retinoic acid receptor-α agonist which 
ameliorated various immunological diseases[204]), reduced the 
expression of ACAT1 and HMG-CoA, increased diacylglycerol 
acyltransferase-1(DGAT-1) expression, inhibited T. gondii -induced 
acquisition and synthesis of cellular cholesterol in macrophage cell 
line J774.1, suppressed the growth of the parasite, and inhibited IL-6 
and atherosclerosis[205,206].
    Insulin was shown to enhance ACAT1 expression in THP-1 
macrophages[207]. Leptin, an adipose tissue-derived hormone, also 
accelerated CEs accumulation by increasing ACAT1 expression 
in human monocyte-derived macrophages and cholesterol 
efflux from these cells[208]. Hori et al[209] found that TGF-β1, a 
multifunctional cytokine with important roles in both host defense 
and immunopathogenesis, increased ACAT1 protein expression and 
activity by 2- to 3-fold during differentiation of human monocytes 
into macrophages. It was suggested that ACAT1 expression in 
monocytes infiltrating from the blood circulation to vascular 
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LCAT (a liver-derived plasma protein) responsible for the synthesis 
of plasma lipoprotein CEs[232] are important determinants of both 
LDL and VLDL cholesterol concentrations and the subsequent 
development of atherosclerosis[233,234]. Lee et al[233] established that 
while ACAT2 contributed CEs to newly secreted VLDL, LCAT 
added CE during LDL particle formation in mice[224,233]. ACAT2 
deficiency led to a marked decrease in the percentage of CEs 
(37.2 ± 2.1% vs 3.9 ± 0.8%) in plasma VLDL, with a concomitant 
increase in the percentage of triglyceride (33.0 ± 3.2% vs 66.7 ± 
2.5%)[233]. LDL is the major cholesterol carrier in the blood, and 
in early stages of atherosclerosis, continuous uptake of naive or 
denatured LDLs by macrophages occurs in the subendothelial 
layer of the aortic intima. The build-up of free cholesterol in 
membranes can cause membrane deformation, leading to cellular 
toxicity[179,186,187]. Plasma CEs provided by ACAT2 and LCAT have 
opposite atherosclerotic potential[232]. Saturated and monounsaturated 
CEs derived predominantly from ACAT2 were associated with 
increased atherosclerosis[235], whereas polyunsaturated fatty acids 
containing CEs derived from LCAT were associated with decreased 
atherosclerosis[236]. LCAT acts primarily on plasma HDL to produce 
cholesterol linoleate and arachidonate[237], and for example, in 
patients with coronary heart disease, the percentage of cholesterol 
linoleate was found to be diminished[238,239]. This is in agreement 
with the finding of Degirolamo et al[240] that polyunsaturated fat 
provide atheroprotection, at least in part, because it limited the 
accumulation of cholesteryl oleate in favor of cholesteryl linoleate 
in plasma lipoproteins. In addition, several data suggested that the 
cholesteryl oleate and cholesteryl palmitate synthesized by ACAT2 
are particularly atherogenic[233,235,241] presumably because of the 
limited ability of macrophages to mobilize cholesterol from these 
CEs[242]. It was also proposed that cholesteryl oleate should be used 
as a biomarker for atherosclerosis[243].
    ACAT2 is an ER-localized transmembrane protein that transfers 
the fatty acyl moiety of acyl-CoA to free cholesterol producing 
mainly cholesteryl oleate and palmitate, and ACAT2-derived CEs can 
be packaged directly into nascent apoB-containing lipoproteins or 
stored as neutral droplets in the cytosol[181,182,226,244,245]. Liang et al[246] 
demonstrated that overexpression of either ACAT1 or ACAT2 in rat 
hepatoma cells increased the secretion and cellular accumulation of 
CE to similar extent, but ACAT2 expression caused a greater increase 
in apoB secretion than ACAT1. It is believed that the primary role 
of liver ACAT2 expression, relevant to atherogenesis, was to enrich 
apoB-containing lipoproteins with cholesteryl oleate and palmitate, 
as opposed to increasing the number of secreted apoB-containing 
particles[234]. The percentage of lipoprotein cholesteryl oleate and the 
rate of hepatic cholesteryl oleate secretion were found to be positively 
related to the extent of atherosclerosis in monkeys[235,247]. Temel et 
al[234] demonstrated that the relative level of ACAT2 expression in 
cells affects the CEs content and, hence, the potential atherogenicity, 
of nascent apoB-containing lipoproteins (Table 14). 
    Cases et al[155] demonstrated in H5 insect cells (these cells 
have very low levels of cellular cholesterol and lack meaningful 
cholesterol esterification activity[192]) that of the fatty acids tested, 
ACAT1 showed a slight preference for oleoyl, while that for ACAT2 
was palmitoyl ≥ linoleoyl > arachidonyl (Table 15). They also 
found that for ACAT1, palmitoyl, linoleoyl, and to a lesser extent, 
arachidonyl, competed with oleoyl for incorporation into CEs, while 
for ACAT2, both linoleoyl and palmitoyl competed with oleoyl for 
incorporation into these structures (Table 16). Moreover, it was 
established that ACAT1 had 58% higher activity with oleoyl-CoA 
compared with palmitoyl-CoA, while ACAT2 showed only small 

Table 14 Effect of ACAT2 on the radiolabelled lipid composition of apoB-
34-containing lipoproteins (acc. to Temel et al[234]; with own modification).

ACAT2 Plasmid (µg)
Percentage total [3H] lipid 

PL TG CE CE/TG PL/CE+TG

0 19.1 77.7 3.4 0.042 0.24

1 19.2 68.7 14.5 0.211 0.2

2.5 19.0 63.5 17.4 0.274 0.24

5 20.3 57.8 22.0 0.38 0.25
Values shown are means of duplicate samples. ApoB, apolipoprotein B, 
CE, cholesteryl ester; PL, phospholipids; TG, triglyceride.

Table 15 Fatty acyl-CoA specificity for cholesterol esterification by 
ACAT1 and ACAT2 expressed in H5 cells. Esterification of [14C]
cholesterol using different fatty acyl-CoAs as substrates (acc. to Cases et 
al[155]; with own modification).

Experiment Relative 
Oleoyl-CoA

activities (units) 
Palmitoyl-CoA

Linoleoyl-
CoA

Arachidonyl-
CoA

ACAT1

Experiment 1 1.0 0.9 0.7 0.4

Experiment 2 1.0 0.6 0.7 0.8

ACAT2

Experiment 1 1.0 1.4 1.4 0.6

Experiment 2 1.0 1.7 1.4 0.7
Cell membranes were prepared and assayed in triplicate. The cholesterol: 
phospholipid liposome molar ratio was 0.2. For ACAT1, the values 
with oleoyl-CoA were 566 and 499 pM of cholesterol esters formed/mg 
protein/min for experiments 1 and 2, respectively, and for ACAT2, they 
were 594 and 529 pM of cholesterol esters formed per mg of protein/min.

Table 16 Fatty acyl-CoA specificity for cholesterol esterification by 
ACAT1 and ACAT2 expressed in H5 cells. Competition of fatty acyl-
CoAs with [14C]oleoyl-CoA for cholesterol esterification (acc. to Cases et 
al[155]; with own modification).

Experiment Relative 
Oleoyl-CoA

activities (units)  
Palmitoyl-CoA

Linoleoyl-
CoA

Arachidonyl-
CoA

ACAT1

Experiment 1 1.0 0.7 0.8 0.9

Experiment 2 1.0 0.8 0.8 0.8

ACAT2

Experiment 1 1.0 0.8 0.7 1.3

Experiment 2 1.0 0.8 0.8 1.3
Cell membranes were prepared and assayed in triplicate. The cholesterol: 
phospholipid liposome molar ratio was 0.7. For ACAT1, the values 
with oleoyl-CoA were 749 and 644 pM of cholesterol esters formed/mg 
protein/min for experiments 1 and 2, respectively, and for ACAT2, they 
were 1661 and 1590 pM of cholesterol esters formed per mg of protein/
min.

Table 17 Fatty acyl-CoA specificity for cholesterol esterification by 
ACAT1 and ACAT2 expressed in H5 cells. Comparison of cholesterol 
esterification using [14C]oleoyl-CoA or [14C]palmitoyl-CoA (acc. to Cases 
et al[155]; with own modification).

Experiment [14C]Oleoyl-CoA pM cholesterol 
ester/mg protein/min

[14C]Palmitoyl-
CoA

ACAT1 529 334

ACAT2 1823 1573
Cell membranes were prepared and assayed in triplicate. Values were ± 
< 5% in all cases. The cholesterol:phospholipids liposome molar ratio was 
0.7.

difference (Table 17)[155]. All these data strongly suggested that 
ACAT2 play a much more extensive role than ACAT1 in generation 
of CEs by macrophages[155]. Miller et al[248] proposed that CEs 
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associated with ACAT2 may have a predictive value in diagnosis of 
coronary artery disease in patients with acute chest pain.
    Further studies of Seo et al[190] also demonstrated that incubation 
of oleic acid, arachidonic acid, and eicosapentaenoic acid induced 
ACAT1 mRNA levels 1.5-2-fold in HepG2 cells, with no effect on 
ACAT2 mRNA. Both HepG2 and THP1 cells showed the greatest 
CE production with oleic acid. ACAT1 expressing cells indicated 
a strong preference for oleic acid while ACAT2 expressing cells 
utilized unsaturated free fatty acids (FFAs). THP1 and ACAT1 
expressing cells utilized oleoyl CoA preferentially. In contrast, 
HepG2 and ACAT2 microsomes utilized linolenoyl CoA as well. The 
authors believed that FFAs increased ACAT1 mRNA levels in a cell 
specific manner, and that the ACAT reactions exhibited differential 
FFA utilization[190].
  
Factors affecting ACAT2 downregulation
Estrogen have beneficial effects on plasma lipids and lipoproteins, 
and reduced atherosclerosis progression[249,250]. Kavanagh et al[250] 
found that estrogen decreased atherosclerosis primarily by reducing 
hepatic ACAT2 activity in ovariectomized monkeys. Estrogen 
regulation of enzymatic activity was established at the protein level 
as both ACAT1 and ACAT2 protein (but not mRNA levels), were 
lower (p = 0.02 and < 0.0001, respectively)[250]. Interestingly, hepatic 
microsomal ACAT2 activity in normolipidemic, non-obese Chinese 
females was significantly lower than observed in males[251]. Moreover, 
the activity of ACAT2 correlated negatively with plasma levels of 
HDL-C (r = -0.57, p < 0.05) and with Apo AI (r = -0.49, p < 0.05). 
The observed sex-related difference may thus contribute to female 
protection from complications of coronary heart disease[251]. Saba 
et al[252] showed that black ginseng extracts (Ginseng Radix nigra, 
a well-characterized medicinal herb with antioxidant activity and 
increased radical scavenging properties) significantly downregulated 
ACAT2 and HMG-CoA mRNA expressions in murine hepatocytes. 
Chronic fluticasone propionate (a glucocorticoid) exposure also 
decreased ACAT2 gene expression in human monocytes and 
macrophages[253]). Orange juice or hesperidin consumption resulted 
in a decrease in the expression of genes encoding ACAT2 together 
with an increase in the expression of genes regulating reverse 
cholesterol transport[254]. ACAT2 was also downregulated by 
naringenin, a flavonoid from grapefruit, which could reduce foam 
cell formation[254,255]. Interestingly, curcumin (no effect on ACAT1 or 
ACAT2; inhibition of oxLDL uptake and promotion of cholesterol 
efflux from macrophages)[256,257] and erythropoietin (increased 
cholesterol efflux from macrophages)[258], were reported to suppress 
the formation of macrophage foam cells. Finally, it should be noted 
that delta 9-tetrahydrocannabinol (THC), the main constituent of 
marijuana (Cannabis sativa), administered by a noninhalation route 
may exert dose-dependent (1 mg/kg/day; low 0.6 ng/mL plasma 
levels with no psychotropic effects) atheroprotective effects via its 
immunomodulatory and antiinflammatory actions[259], as well as 
inhibition of ACAT1 and ACAT2 activities[260]. 
    In summary, ACAT2 enzyme has a longer half-life than ACAT1. 
For ACAT2, both linoleoyl and palmitoyl competed with oleoyl 
for incorporation into CEs, while for ACAT1, palmitoyl, linoleoyl, 
competed with oleoyl for this biochemical reaction. ACAT1 had 
a higher activity with oleoyl-CoA compared with palmitoyl-
CoA, while ACAT2 showed only small difference. All these data 
strongly suggest that ACAT2 play a much more extensive role than 
ACAT1 in generation of CEs by macrophages, and thus in foam 
cells biogenesis. Clinically, it was proposed that CEs associated 
with ACAT2 may predict coronary artery disease in patients with 

acute coronary syndrome, especially that gender-related differences 
in hepatic microsomal ACAT2 activity have been documented in 
normolipidemic, non-obese Chinese females. 

IMPORTANT ROLE OF TOLL-LIKE RECEPTORS 
(TLRs), ESPECIALLY TLR2 AND TLR4, IN BOTH 
T. gondii INFECTION AND DEVELOPMENT 
OF ATHEROSCLEROSIS
Atherosclerosis
The first steps of atherosclerosis are inflammatory in nature[40,261]. A 
family of TLRs has been defined as a key component of pathogen-
associated molecular pattern recognition machinery[262,263]. TLRs are 
proinflammatory sensors of pathogens, and potential links between 
infectious disease, inflammation and atherosclerosis, originally 
identified as receptors that activate host defenses in response 
to microbial-derived ligands such as Gram-negative bacterial 
lipopolysaccharides (LPS)[264,265], and T. gondii[266,267]. There are 
growing evidence showing the contribution of the TLR-signaling 
pathway to initiation and progression of atherosclerosis[268,269]. 
Xi et al[270] performed a systemic analysis of the molecular 
pathomechanism underlying atherosclerosis and found that 1312 
genes from 45,304 publications, were associated with atherosclerosis. 
35 gene ontology terms were significantly enriched, and the 
most highly overrepresented pathway went to the TLR signaling 
pathway, known to play an important role in atherosclerosis in both 
inflammatory and immune response[270]. 
    Two prominent risk factors, infectious disease and hyperlipidemia 
point to innate immune mechanisms as potential contributors to 
proatherogenic inflammation[271]. Atherosclerotic lesions form 
only in arteries at sites of disturbed blood flow[272]. Although all 
endothelial cells are exposed to comparable levels of circulating 
plasma cholesterol, only endothelial cells overlaying lesions display 
an inflamed phenotype[75]. This occurs even in the absence of any 
additional exacerbating disease factors because blood flow controls 
the expression of TLRs which are initiators of cellular activation 
and inflammation. TLR2 and TLR4 expression exerted an overall 
proatherogenic effect in hyperlipidemic mice. TLR activation of 
the endothelium promoted lipid and leukocyte accumulation within 
lesions[75]. 
    TLRs ligands are expressed in various cell types within the 
atherosclerotic plaque[273]. TLR1, TLR2, and TLR4 were upregulated 
in human atheroma with active NF-κB colocalizing with TLR2 
and TLR4 in the plaque[263]. Tobias and Curtis[271] observed that 
proatherogenic TRL2 responses to so far unknown endogenous or 
unknown endemic exogenous agonists were mediated by non bone-
marrow-derived cells, including endothelial cells. TLR ligands 
potentially associated with development of atherosclerosis are 
presented in Table 18.
    TLR-2 ligands (lipoproteins, such as peptidoglycan and lipoteichoic 
acids from Gram-positive bacteria) and TLR-4 ligands (LPS from 
Gram-negative bacteria) play an important role in the innate and 
inflammatory signaling to activate the NF-κB pathway and release of 
proinflammatory cytokines[276-283]. Activation of NF-κB is essential for 
the regulation of a variety of genes involved in the inflammatory and 
proliferative responses of cells critical to atherogenesis[284,285]. Edfeldt 
et al[263] found that the expression of TLR1, TLR2 (peptidoglycan 
as a ligand), and TLR4 (LPS as a ligand) was markedly enhanced 
in human atherosclerotic plaques and associated with inflammatory 
activation of endothelial cells and macrophages. TLR expression 
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by macrophages permitted local differentiation of these cells into 
antigen-presenting cells because TLR2 ligation stimulated this 
process[286]. Therefore, TLRs may provide an important link between 
local innate and adaptive immunity and enhance the cellular immune 
response in the plaque to local antigens such as heat shock proteins 
(HSPs) and oxidized lipoproteins[263]. 
    In the advanced atherosclerotic lesions in humans, TLR1, TLR2, 
TLR4 were detected in macrophages, endothelial cells, and vascular 
smooth muscle cells (VSMCs), while TLR2 and TLR4 were 
expressed in atherosclerotic lesion[263,264,280]. Human VSMCs were 
reported to express functional TLR2 and TLR4 signal complexes 
linked to chemokine and proinflammatory cytokine release[287]. 
The expressions of TLR2 and TLR4 in VSMCs were augmented 
in the atherosclerotic lesions[288]. Local overexpression of TLR-like 
receptors at the vessel wall induced atherosclerotic lesion formation. 
Shinohara et al[264] demonstrated that the expression of both TLR2 
and TLR4 at the vessel wall, particularly in VMSCs, synergistically 
accelerated atherosclerotic process at its early stage, especially under 
hypercholesterolemia. They also showed that overexpression of 
TLR2 and TLR4 in VMSCs induced the synergistic activation of NF-
κB at the vessel wall, which resulted in augmented expression of key 
molecules of atherosclerosis such as intracellular adhesion molecule 
1, vascular cell adhesion molecule 1, and monocyte chemoattractant 
protein-1[264].
    Xu et al[280] showed that the proinflammatory signaling receptor 
TLR4 colocalized with lipid-rich and macrophage-infiltrated murine 
atherosclerotic lesions and at the shoulder region of human coronary 
artery plaques. Furthermore, basal TLR4 mRNA expression by 
cultured human monocyte-derived macrophages was upregulated 
by oxLDL (but not native LDL) in vitro, raising the possiblity that 
enhanced TLR4 expression may play a role in the inflammatory 
responses linking lipids to chronic infection, inflammation, and 
atherosclerosis[40,289,290]. In fact, TLR4 was expressed by macrophages 
in murine and human lipid-rich atherosclerotic plaques and 
upregulated by oxLDL[280].
    HSP60 was found to be implicated in the pathogenesis of 
atherosclerosis[291], and the intensity of its expression correlated 
positively with the atherosclerotic severity[292,293]. Hypoxia induced 
HSP expression in human coronary artery bypass grafts[36]. Berberian 
et al[294] reported also the elevated expression of HSP70 in human 
atherosclerotic plaques, and it was mainly concentrated in the central 
portions of more thickened atheromas around sites of necrosis and 
lipid accumulation[295]. OxLDL triggered in vitro the expression 
of HSP60 in monocytes/macrophages[296], and HSP70 in human 
endothelial cells[297] and SMCs[298]. It appeared that oxLDL induced 
HSP70 expression mainly in growing endothelial cells, indicating 
that those cells, present in lesion-prone sites, were more sensitive 
to oxLDL than were quiescent cells[299]. HSP70 played a major role 
in cytokine generation in human oxLDL treated macrophages[300], 
and it was demonstrated that plasma HSP70 levels predicted risk of 
acute coronary syndrome[301], the development of atherosclerosis in 
patients with established hypertension[302], and had atheroprotective 
properties[303].
    Gonzalez-Ramos et al[304] found that HSP70 increased extracellular 
matrix (ECM) production by human VSMCs through transforming 
growth factor-β1 (TGF-β1) up-regulation. TGF-β1 is a vascular 
profibrotic cytokine that is regulated in part by activator protein 1 
(AP-1)-dependent transcriptional mechanisms. HSP70 can interact 
with the VSMCs, the major producer of ECM proteins, through the 
TLR4. The authors demonstrated that extracellular HSP70 binds 
to human aorta smooth muscle cell TLR4, which upregulated the 

Table 18 TLR ligands implicated in atherosclerosis (acc. to Hodgkinson & 
Ye[273]; with own modification).
TLR Ligand

TLR2 Oxidized LDL, hyaluronan, HSP60, peptidoglycan, Apo CIII, 
HMGB1

TLR3/9 CMV, viral dsDNA 

TLR4 LPS, modified LDL, fibrinogen, hyaluronan, heparan sulfate, 
fibronectin EDA, HSP60, tenascin C, β-defensin 2, HMGB1

Apo CIII, apolipoprotein CIII (Apo CIII induces expression of VCAM-1 
in vascular endothelial cells and increases adhesion of monocytic cells); 
CMV, cytomegalovirus; dsDNA, double stranded DNA; fibronectin 
EDA, fibronectin extra domain A; HMGB1, high-mobility group box 
protein 1 (a proinflammatory  molecule); LPS, lipopolysacharide. 
Stimulation with heparan sulfate induced dendritic cells (DCs) to secrete 
proinflammatory cytokines, such as TNF-α and IL-6, an effect that was 
TLR4 dependent[273,274]. DCs phenotypically and functionally matured in 
response to heparan sulfate, an effect that was abrogated when TLR4 was 
inhibited[275]. 

AP-1-dependent transcriptional activity of the TGF-β1 promoter. 
The TGF-β1 upregulation increased the expression of the ECM 
proteins type I collagen and fibronectin. These findings may help in 
elucidating the pathomechanisms by which HSP70 contributed in the 
inflammation and fibrosis observed in atherosclerosis[304]. 

T. gondii infection
TLRs expressed differentially among immune cells[305-307] 
recognize microbial components distinct from host self molecules. 
Glycosylphosphatidylinositol (GPI)-anchored proteins dominate 
the surface of the T. gondii tachyzoite[308,309], and GPI synthesis is 
an essential process for viability of the parasite[310,311]. GPI from 
tachyzoites induced TNF-α generation in macrophages via the 
activation of the transcription factor NF-κB[312]. Debierre-Grockiego 
et al[307,311,312] suggested that both TLR2 and TLR4 receptors may 
contribute in collaboration with other MyD88-dependent receptors 
(e.g. TLR9) in the host defense against T. gondii infection through 
their activations by the GPIs. Interestingly, the native core glycans 
and the diacylglycerols isolated from purified T. gondii GPIs also 
were able to activate both TLR2 and TLR4, and simultaneous 
deficiency of TLR2 and TLR4 was required to abrogate the in vitro 
TNF-α production by macrophages exposed to T. gondii GPIs[307].
    Denkers et al[313, 314] found that macrophages, which along with 
DCs are targets of in vivo infection, produced cytokines such as 
TNF-α and IL-12 when activated through TLR4 on the host cell 
surface[315,316]. If these cells were first exposed to tachyzoites, they 
lost their ability to respond to IFN-γ, and TNF-α production was 
suppressed. Because other biomediators such as antiinflammatory 
IL-10 were unaffected, carrying the parasite did not make such cells 
generally dysfunctional. Moreover, only cells containing intracellular 
pathogens became unresponsive and there was no bystander effect on 
uninfected cells. Instead, T. gondii directly subverted these signaling 
pathways within host cells probably as a defense mechanism to avoid 
or delay induction of antimicrobial activity and/or T-cell-mediated 
immunity during host infection[316,317].
    T. gondii-derived HSP70 stimulated maturation of murine marrow-
derived DCs through TLR4[60]. Under stress conditions, T. gondii 
RH strain tachyzoites differentiated into bradyzoites and induced T. 
gondii HSP70 (TgHSP70) protein expression, a highly immunogenic 
protein[318-321]. Also, reactivationTgHSP70 in vivo induced expression 
of TgHSP70 during bradyzoite to tachyzoite interconversion[322]. 
Recombinant (rTgHSP70) and natural TgHSP70 stimulated the NO 
release by peritoneal macrophages via TRL2, MyD888 and IRAK4, 
but under restimulation, signaling of rTgHSP70-induced tolerance 
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was mediated by TRL4[323].
    HSP70 has been shown to be a major immunomodulant antigen in 
parasitic and bacterial infections, and the preferred target of humoral 
and cell-mediated immune responses to infection[320,323-326]. Barenco 
et al[321] found that in mice the TgHSP70 release into the bloodstream 
was dependent on the death of T. gondii tachyzoites mediated 
by the host immune response, whereas the increased TgHSP70 
expression in the brain depended on the multiplication rate of the 
parasite. Aosai et al[327] showed that TgHSP70 induced prominent 
responses in murine B cells derived not only from T. gondii-infected 
but also from uninfected mice. B220+ spleen cells showed marked 
proliferation after stimulation with TgHSP70 but neither CD4+ nor 
CD8+ population responded. These data indicated that TgHSP70 
induced proliferation of B cells but not T cells, and TLR4 was found 
to be required for TgHSP70-induced B cell activation[189]. It should be 
emphasized that TLR4-mediated inflammation promoted foam cell 
formation of VSMC by upregulating ACAT1 expression[189]. 
    TgHSP70 was shown to deteriorate the host defense by down-
regulating NO release of peritoneal macrophages in the T. gondii-
infected host[328]. TgHSP70 induced anti-mHSP70 autoantibody 
formation by B-1 cells in T. gondii-infected mice[329]. It was reported 
that HSP70 induced DC maturation after binding to immature DC 
and suggested the abundant receptor expression for HSP70 on 
immature DC[317,330]. It is well known that TRL4 is a critical receptor 
and signal transducer for LPS. LPS downregulated surface expression 
of the TRL4-MD2 complex on peritoneal macrophages[331,332]. It was 
demonstrated that both TgHSP70- and LPS-induced proliferative 
responses of spleen cells required TRL4 molecules as a receptor[327]. 
    The mechanisms responsible for the atherogenic modification of 
LDL may include: oxidation mediated by NOS, myeloperoxidase, 
and/or 15-lipoxygenase[333,334]. NO is a potent oxidant produced 
by both endothelial cells and macrophages that appear to exert 
both protective and atherogenic effects, depending on the source 
of production. NO produced by endothelial NOS has vasodilator 
function and is potentially atheroprotective. In contrast, NO produced 
via the much higher capacity iNOS in macrophages, serving 
antimicrobial functions based on its potent oxidative properties, is 
potentially atherogenic[334]. 
    NO and its metabolites control a number of host defense functions 
regulated by activated macrophages, including antimicrobial and 
tumoricidal activities, implicated in the pathogenesis of tissue 
damage associated with acute and chronic inflammation[335-337]. It 
was demonstrated that NO lead to the induction of HSP70 protein 
and mRNA in cultured SMCs[338]and other cells[339,340]. Mun et al[323] 
found that TgHSP70-induced NO release was dependent on the 
TLR2/MyD88 signal transduction pathway, and that prior exposure 
to TgHSP70 induced a tolerance of NO production for subsequent 
stimulation with TgHSP70 via TRL4 (Table 19). TgHSP70 was 
shown to cause deterioration of the host defense by downregulating 
NO release by peritoneal macrophages in the T. gondii-infected 
host[323,329,341]. 
    Together, TLR-like receptors play a critical role in the innate 
immune responses to microbial-derived ligands, including those of T. 
gondii. TLR2 and TLR4 ligands are important for the inflammatory 
signaling to activate the NF-κB pathway and release proinflammatory 
cytokines. In the advanced atherosclerotic lesions in humans, TLR1, 
TLR2, TLR4 were detected in macrophages, endothelial cells, and 
VSMCs, while TLR2 and TLR4 were expressed in atherosclerotic 
lesions. TLR4-mediated inflammation promoted foam cell formation 
of VSMC by upregulating ACAT1 expression. Activation of 
TLR2 and TLR4 by GPIs derived from T. gondii associated with 

the increased production of proinflammatory cytokines, oxLDL, 
HSP60, HSP70, and NO and its metabolites are all implicated in the 
pathogenesis of atherosclerosis. 

PROINFLAMMATORY CYTOKINES IN-
CREASE FOAM CELL FORMATION. LATENT 
CHRONIC T. gondii INFECTION PERSIS-
TENTLY GENERATES PROINFLAMMATORY 
CYTOKINES AND THUS PLAY A CRUCIAL 
ROLE IN FOAM CELL BIOGENESIS
Atherosclerosis
Inflammation is a triggering and an aggravating factor in 
atherogenesis[40,161]. Elevated plasma levels of proinflammatory 
cytokines have been demonstrated in patients with established 
atherosclerotic disease[162,163]. It is therefore believed that cytokines 
are key players in all stages of disease and have a profound influence 
on the pathogenesis of the disease[342]. 
    TNF-α, a proinflammatory cytokine, participates in every step of 
the inflammation process[159,340-343]. High concentrations of TNF-α 
were found in atherosclerotic lesions, and it was reported that this 
cytokine regulated multiple genes involved in various stages of 
atherosclerosis, exhibiting mostly proatherosclerotic properties[159]. 
In animal models of atherosclerosis, inhibition of TNF-α reduced 
the progression of this process[347]. In healthy males, plasma TNF-α 
concentrations correlated with early carotid artery atherosclerosis[348]. 
TNF-α is secreted by activated macrophages, lymphocytes, 
endothelial cells, and SMCs[349]. Lei et al[159] showed that in cultured 
differentiating human monocytes, TNF-α even at low concentrations 
(2.5-5 ng/mL), increased the expression of the ACAT1 gene, 
enhanced the CEs accumulation, and promoted foam cells formation. 
    Cytokine regulation of ACAT1 gene expression in monocytes/
macrophages play important roles in the initiation and progression 
of atherosclerosis[159]. The expression of the human ACAT1 gene 
was also synergistically upregulated by IL-1β[160,161], IFN-γ[203,347], 
and TGF-β[210]. In contrast, the human ACAT1 gene expression was 
downregulated by adiponectin, an adipocytokine that exerted many 
antiatherosclerotic effects in cell culture studies[350], for example by 
increasing cholesterol efflux from macrophages[351].
    Lipid loading of primary human macrophages resulted in altered 
cytokine secretion from cells and effects were similar regardless 
of neutral lipid composition of cells[352]. It was demonstrated that 
formation of triglyceride (TG)-loaded human monocyte-derived 
macrophages caused a 4-fold increase in basal IL-1β secretion, and 

Table 19 Tolerance of NO synthesis by secondary challenge with 
TgHSP70 through TLR4 (acc. to Mun et al[323]; with own modification).

Mouse strain Stimulation NO synthesis a Tolerance 
induction b

Wild type
TgHSP70 + +

LPS + +

TLR4 deficient
TgHSP70 + -

LPS - ND

TLR2 deficient
TgHSP70 - ND

LPS + +

MyD88 deficient
TgHSP70 - ND

LPS - ND
a+, NO synthesis positive; -, NO synthesis negative; b+, occurrence 
of tolerance induction; -, no occurrence of tolerance induction. ND, 
not detected, NO synthesis did not occur by primary stimulation with 
TgHSP70 and LPS. LPS, lipopolysaccharide. TLR2 regulated TgHSP70-
induced TNF-α mRNA expression and tolerance.
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in contrast, secretion of TNF-α and IL-6 decreased significantly 
following both TG and cholesterol loading[352]. Formation of TG 
loaded foam macrophages by incubation with VLDL also resulted 
in a marked increase in IL-1β expression in these cells[353]. Ruan et 
al[161] showed that IL-1β (5-20 ng/mL) enhanced transformation of 
VSMCs into foam cells by increasing uptake of unmodified LDL 
via LDL receptors and by enhancing cholesterol esterification. It 
was found that IL-1β increased both ACAT1 protein activity and 
mRNA expression. Exposure to IL-1β also caused overexpression 
of the sterol regulatory element binding protein (SREBP), cleavage-
activating protein, and enhanced its translocation from the 
endoplasmic reticulum to the Golgi, where it is known to cleave 
SREBP, thereby enhancing LDL receptor gene expression. Thus, IL-
1β disrupted cholesterol-mediated LDL receptor feedback regulation, 
permitting intracellular accumulation of unmodified LDL and causing 
foam cell formation. This suggested that proinflammatory cytokines 
may contribute to intracellular accumulation of native LDL without 
prior modification of the lipoprotein by oxidation or glycosylation 
under inflammatory stress[161]. 
    IL-33 exerted a controling protective role in atherosclerosis 
in vivo [354]. This IL-1 cytokine family member induced the 
production of the TH2 cytokines IL-4 and IL-13, and enhanced 
serum immunoglobulin synthesis[355]. IL-33 was a promoter of TH2-
dependent inflammatory diseases[356,357], and activated a number 
of cell types, including TH2 cells, mast cells and basophils, and 
promoted systemic sclerosis[358]. McLaren et al[354] found that IL-
33 blocked macrophage foam cell formation in vitro by directly 
decreasing acetylated LDL and oxLDL uptake, storage of cholesteryl 
esters and triglyceride, and reducing intracellular total and esterified 
cholesterol content, and enhancing cholesterol efflux/transport, and 
by inducing a phenotypical TH1-to-TH2 switch. IL-33 also decreased 
the expression of key genes implicated in cholesterol esterification 
and triglyceride storage, including ACAT1 and adipocyte 
differentiation-related protein[354]. 
    Feingold et al[359] found that low doses of LPS stimulated hepatic 
TG production, while high doses inhibited the clearance of TG-rich 
lipoproteins in rats. LPS and several cytokines, including TNF-α, 
TNF-β, IL-1, IL-6, IFN-α, platelet activating factor, rapidly induced 
de novo fatty acid (FA) synthesis and hepatic TG synthesis in rodents 
(Table 20)[360-362], at least in part by increasing hepatic intracellular 
concentrations of citrate, an activator of acetyl CoA carboxylase 
[363]. IL-4, an antiinflammatory cytokine, inhibited the stimulatory 
effects of TNF, IL-1, and IL-6 on hepatic FA synthesis by blocking 
the increase in hepatic citrate levels[364]. LPS stimulated hepatic 
cholesterol synthesis by increasing the transcription rate, mRNA 
expression, protein mass, and activity of HMG-CoA reductase[365,366]. 
In rats, LPS significantly inhibited the clearance of LDL from the 
circulation[367], and decreased the expression of hepatic LDL receptor 
protein (Table 21). 

T. gondii infection
Acute toxoplasmosis sometimes leads to lethal overproduction 
of proinflammatory TH1 cytokines[33]. During acute and chronic 
infection in mice there were differences in virulence of T. gondii 
and different strains of the parasite induced different cytokine 
responses[368,369]. For example, the serum levels of IL-12, IL-6, IL-
10, IFN-γ, and TNF-α were significantly higher in the type II strain 
ME49-infected mice than in the FORT-infected mice, suggesting that 
not all type II strains (most frequent in humans) cause toxoplasma 
encephalitis in these animals[368]. Chronic infection with T. gondii 
induced high levels of the cytokines IL-12 and TNF-α, which are 

typically associated with macrophage function[316], and DCs[370,371] as 
well as neutrophils[372] also have emerged as essential producers of 
IL-12. A pyrogenic factor TNF-α is liable to induce the secretion of 
acute inflammatory phase proteins via the production of IL-6[373,374]. 
In toxoplasmosis, TNF-α appeared to be essential for macrophage 
activation and inhibition of parasite replication, and this action can 
only be exerted in synergy with IFN-γ[373]. Macrophages are known as 
important effectors of the innate immune system, and they posses the 
potential of directing acquired immunity toward a TH1-biased type 
of immune response[375]. In addition to producing proinflammatory 
cytokines such as IL-12, TNF-α, IL-1β[32,376-379] and antiinflammatory 
cytokines (eg, IL-10, TGF-β)[32], macrophages are a source of the 
microbicidal effector molecule NO and are capable of phagocytosing 
pathogens and degrading them within the phagolysosome. It should 
however be noted that the parasite also displays potent down-
regulatory effects on IL-12, TNF-α, and NO production by infected 
macrophages, being a result of tachyzoite-induced blockade of 
NF-κB nuclear translocation[316,380]. In addition, T. gondii readily 
uses macrophages as host cells and reside in these cells within a 
specialized parasitophorous vacuole[381,382], which resists acidification 
and lysosomal fusion[382].
    IL-6 and IL-27 are closely related cytokines that play critical but 
distinct roles during infection with T. gondii, i.e. IL-6 is required for 
the development of protective immunity to this pathogen, whereas 
IL-27 is required to limit infection-induced pathology[383]. IL-6 is 
known to mediate both pro- and antiinflammatory effects having two 
distinct ways to induce cell-signaling: either through the membrane 
bound receptor (antiinflammatory) or through trans-signaling 
(proinflammatory)[384]. This cytokine is the main stimulator of the 
production of most acute phase proteins[385,386], and is important to 
the transition between acute and chronic inflammation[387]. Moreover, 
IL-6 played an important role in regulation of the expression of 

Table 20 Effects of LPS, lipoteichoic acid (LTA), and cytokines on 
triglyceride (TG) metabolism in intact rodents (acc. to Khovidhunkit et 
al[360]; with own modification).

Parameter LPS LTA TNF IL-1 IL-6 IFN-α IFN-γ

Serum TG ↑ ↑ ↑ ↑ ↑ ↔ ↔
Hepatic FA 
synthesis ↑ ↑ ↑ ↑ ↑ ↑ ↔

FA oxidation ↓ ND ↓ ↓ ND ND ND

TG secretion ↑ ↑ ↑ ↑ ↑ ND ND

TG clearance ↔a, ↓b ↔ ↔ ↔ ↔ ND ND

LPL activity ↓ ↔ ↓, ↔c ↓ ↓ ↓ ↓

Lipolysis ↑ ↑ ↑ ↔ ↑ ↑ ↑
Serum ketone 
body ↓ ND ↓ ↓ ↔ ↑a, ↔b ↑

FA, fatty acids; LPL, lipoprotein lipase; LPS, lipopolysacchride; ND, not 
determined. a Low doses. b High doses. c Some but not most tissues.

Table 21 Effects of LPS, lipoteichoic acid (LTA), and cytokines on 
cholesterol metabolism in intact rodents (acc. to Khovidhunkit et al[360]; 
with own modification).
Parameter LPS LTA TNF IL-1 IL-6 IFN-α IFN-γ

Serum cholesterol ↑,↓a ↑ ↑,↓a ↑,↔a ↑ ↔ ↔

Hepatic cholesterol synthesis ↑ ND ↑ ↑ ND ↔ ↑

HMG-CoA reductase activity ↑ ND ↑ ↑ ND ND ↔

LDL receptor protein ↓, ↔b ND ↔b ↔b ND ND ND

Bile acid synthesis ↓ ND ↓ ↓ ND ND ND

LDL, low density lipoproteins; HMG-CoA, 3-hydroxy-3-methylglutamyl 
coenzyme A; LPS, lipopolysacchride; ND, not determined. aPrimates. 

bHamsters. 
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cytokine and chemokine stimulation of antibody production by B 
cells, regulation of macrophage and DC differentiation, and the 
response of regulatory T cells to microbial infection[388-390]. This 
cytokine also protected human macrophages from cellular cholesterol 
accumulation[391]. Most importantly however, because IL-6 was found 
to promote the intracellular multiplication of T. gondii in mice[392], 
and in peritoneal macrophages (in a dose-dependent manner)[393], 
it may play an important role in triggering and development of 
atherosclerosis. 
    Lipoprotein-associated phospholipase A2 (Lp-PLA2) is an 
inflammatory enzyme that catalyzes the hydrolysis of oxidized 
phospholipids into lysophospholipids on the surface of lipoproteins, 
and approximately 80% of serum Lp-PLA2 was found on the surface 
of LDL particles, migrating across the vascular endothelial cell 
layer together with LDL[114]. Coronary arterial lesions had a high 
concentrations of Lp-PLA2 in the necrotic core[394], which suggested 
its involvement in atherosclerotic plaque rupture[114]. Intracellular 
parasites acquire host cholesterol that endocytosed by the LDL 
pathway, a process that is specifically increased in T. gondii infected 
host cells[149], and interestingly, PLA2 was found to be implicated in T. 
gondii cell invasion through increasing their penetration[395].

T. gondii RELEASES FROM INFECTED HOST 
CELLS INTO THE EXTRACELLULAR SPACE 
SMALL VESICLES KNOWN AS EXOSOMES 
WHICH CONTAIN PATHOGEN-ASSOCIAT-
ED MOLECULAR PATTERNS (PAMP) AND 
OTHER BIOMOLECULES THAT STIMULATE 
PROINFLAMMATORY RESPONSES, AND 
MAY THEREFORE PLAY A ROLE IN THE 
PATHOGENESIS OF ATHEROSCLEROSIS
Extracellular vesicles (ECVs) are carriers of PAMP and damage-
associated molecular patterns (DAMP), cytokines, autoantigens, and 
tissue-degrading enzymes and have a possible role in pathogenesis 
of several inflammatory states and various clinical entities, including 
infections, atherosclerosis, and autoimmune diseases. ECVs contain 
proteins, lipids, nucleic acids from the cell from which they derived, 
and participate in intercellular communication[396]. 
    Bhatnagar et al[397] found that THP-1 macrophages infected with 
intracellular pathogens, including T. gondii virulent RH strain, 
released from cells small 50-100 nm diameter vesicles, known 
as exosomes, into the extracellular space. These exosomes, when 
exposed to uninfected macrophages, stimulated a proinflammatory 
TNF-α response in a TLR2 or TLR4 receptor- and MyD88-dependent 
manner, and exosomes, not apoptotic vesicles, were responsible for 
the proinflammatory activity[397]. Exosomes are released, especially 
during cellular stress, from many different cell types[398], and 
dendritic cells and B cells expressed MHC class I and II molecules 
as well as costimulatory particles, and have been shown to promote 
T-cell activation[399-401]. Exosomes from a mouse dendritic cell line 
incubated with T. gondii-derived antigens triggered a strong systemic 
humoral immune response protective against infection with the 
pathogen[402]. T. gondii infection of human foreskin fibroblasts also 
caused the production of exosome-like vesicles containing a unique 
array of mRNA and miRNA transcripts described in the literature 
data as having abnormal neurologic effects[403-406]. The vesicles from 
infected cells could attach and deliver their contents to uninfected 

cells, and their RNA contents are not just reflecting a cytoplasmic 
RNA, thereby causing the function of these cells to be altered[403]. 
    Several stimuli, such as proinflammatory cytokines, lead to ECVs 
release from monocytes and macrophages in the atherosclerotic 
lesion[407]. ECVs derived from circulating in blood vascular 
endothelial cells, VSMCs, macrophages, and other circulating 
immune cells mainly have proinflammatory properties[408], and 
for example proinflammatory cytokines and NO can trigger blood 
endothelial cells-derived ECVs production[409]. Moreover, recent 
findings have associated lymphatic dysfunction with the pathogenesis 
of atherosclerosis, hypercholesterolemia, and cardiovascular 
diseases [410]. Inflammatory cell accumulation in peripheral 
tissues drives several chronic inflammatory diseases, including 
atherosclerosis and obesity[261] in which lymphatic transport has been 
found defective[410-412]. Milasan et al[413] showed that diverse ECs 
inclusively derived from erythrocytes and platelets were present 
in lymph of healthy animals, and their levels were modulated in 
lymph during atherosclerosis. It must be noted that circulating red 
blood cells may be infected with T. gondii[414], human and chicken 
thrombocytes have phagocytic capacity[415,416], and adherence of 
platelets to tachyzoites of the parasite together with disruption of 
surface membranes and cytoplasmic contents of the organisms, were 
observed ultrastructurally[417]. Although chicken erythrocytes and 
platelets were found to be infected with the parasite, the pathogen 
was however not capable of replication in these cells[418]. 
    In summary, the parasite which infect different cell types, 
participates in the production of many ECVs. Circulating ECVs may 
contain remnants of T. gondii tachyzoites, such as PAMP, DAMP 
and other microbioparticles that are dispersed to various organs, 
and may take part in triggering persistent inflammation, lymphatic 
drainage dysfunction, and development of atherosclerosis and various 
cardiovascular events. 

ANEMIA, HEMORRHAGE, FIBRIN DEPOSI-
TION IN TISSUES, AND DISTURBANCES IN 
BLOOD COAGULATION OBSERVED DUR-
ING T. gondii INFECTION MAY WELL EX-
PLAIN SIMILAR ABNORMALITIES CHARAC-
TERISTIC FOR ATHEROSCLEROSIS
In mammals, T. gondii infects all nucleated cells[419], and thus has 
the potential to directly damage vascular cells, thereby causing 
hemorrhage and activating a pathophysiological blood coagulation 
response. Studies of host defense against T. gondii infection showed 
that protection was mediated by a robust proinflammatory TH1 type 
of immune response characterized by the prolific production of 
large quantities of IFN-γ and other proinflammatory cytokines[32,420]. 
Chronic overproduction of IFN-γ induced anemia by both reducing 
mature erythrocyte life span in the circulation and inhibiting 
erythropoiesis via IL-15[421-423]. IFN-γ also stimulated expression 
of genes that favored and/or stabilized fibrin deposition[424-426]. Del 
Prete et al[427] documented that TH1 and TH2 T-helper cells exerted 
opposite regulatory effects on procoagulant activity and tissue factor 
production by human monocytes. 
    Several authors reported that blood coagulation leading to fibrin 
deposition performed multiple protective functions during infection 
because fibrin: (a) restrained pathogen growth and dissemination, (b) 
protected against hemorrhagic pathology, and (c) probably promoted 
tissue repair[428-433]. Mullarky et al[434] found that in mice lacking 
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IFN-γ, IL-12, and/or TNF-α neither hemorrhage nor pathogen 
burden were responsible for fibrin levels during T. gondii infection, 
and that cytokines exerted dominant regulatory roles (Table 22). It 
appeared that proinflammatory TH1 immunity provoked hemorrhage 
via IFN-γ while independently promoting the deposition of fibrin 
via TNF-α[434]. Earlier studies showed that TFN-a may favor fibrin 
deposition by stimulating vascular wall permeability[435-437], and the 
cytokine promoted the formation of fibrin as well as fibrin-associated 
adhesions and abscesses in a model of septic peritonitis[432]. TNF-α 
also increased expression of procoagulant biomolecules[438,439], 
including PAI generation[24-26], decreased expression of anticoagulant 
factors[438-440], and/or suppressed fibrin degradation in human 
endothelial cells[434,441-443]. 
    Blood coagulation disturbances leading to fibrin deposition 
frequently accompanied TH1 type of immune responses, including 
autoimmunity[424,429,444-446]. Studies using fibrinogen-deficient mice 
revealed pathological roles for fibrin (ogen) during atherosclerosis[447], 
and reported that fibrin can upregulate expression of proinflammatory 
cytokines and chemokines in humans[448]. Johnson et al [429] 
demonstrated that blood coagulation performed important protective 
function during T. gondii infection by suppressing hemorrhage 
evoked by IFN-γ, a critical proinflammatory mediator of TH1 
immunity. Fibrin deposition mediated protection of host tissue 
against T. gondii infection-stimulated immunopathology[429]. These 
investigators[429] established that increased production of fibrin during 
T. gondii infection prevented infection-stimulated blood loss, thereby 
performing a protective function evoked by IFN-γ, a critical immune 
mediator elicited by the parasite during host robust TH1 type immune 
response. Since IFN-γ and other cytokines stimulated also expression 
of genes that promote and/or stabilize fibrin deposition[424-426], it may 
suggest that the enhanced TH1 immune response evolved means to 
locally up-regulate blood coagulation activity, thereby protecting 
against its own destructive bioprocesses[429]. 

Plasminogen activator inhibitor-1 (PAI-1)
PAI-1, a prothrombotic protein and the fast-acting inhibitor of 
plasminogen activators, is the principal regulator of endogenous 
fibrinolytic enzyme system. Disruption of the PAI-1 gene was 
associated with increased resistance to thrombosis and with a 
mild hyperfibrinolytic state characterized by enhanced in vivo clot 
lysis[449,450]. Low fibrinolytic capacity has been associated with an 
increased risk of recurrent major cardiovascular disorders[451]. Nilsson 
et al[36] showed that unsaturated fatty acids, i.e. oleic, linoleic, and 
linolenic acid, and eicopentaenoic acid, caused a significant increase 
in PAI-1 secretion and mRNA levels from cultured human umbilical 
endothelial and EA.hy926 type cells. Transfection experiments 
demonstrated that addition of linolenic acid and eicosapentaenoic 
acid markedly increased PAI-1 transcription[450]. It was found that 
unsaturated fatty acids induced the same complex as did VLDL, 
whereas saturated fatty acids had no effect. VLDL has been shown 
to induce a concentration-dependent increase in the PAI-1 secretion 
from human umbilical venous endothelial cells[452-454] and HepG2 
cells in vitro[453,455]. In vivo, several studies demonstrated a strong 
positive correlation between the plasma VLDL triglyceride and PAI-
1 activity levels[456-458], and a VLDL response element was identified 
in the promoter region of the PAI-1 gene locus[459]. Addition of a 
triglyceride-rich emulsion also resulted in an enhanced secretion 
of PAI-1 by HepG2 cells[460]. These in vitro data are in line with 
the finding that administration of n-3 fatty acids in vivo resulted in 
increased plasma PAI-1 activity[461,462].
    The increased level of PAI-1 may critically affect fibrinolysis 

Table 22 Dissociation of roles for hemorrhage, pathogen burden, and 
cytokines in the regulation of fibrin deposition during acute T. gondii 
infection in mice (acc. to Mullarky et al[434]; with own modification).
Mouse a Fibrin Hemorrhage b Parasites IFN-γ TNF-α
IFN-γ-deficient ++++ - ++++ - ++

IL-12-deficient ++ - ++++ + +

TNF-α-deficient +/- ++ +++ ++ -
IFN-γ/TNF-α 
deficient ++++ c - ++++ - -

WT, wild type mice; a Data were compiled from multiple experiments. 
A semiquantitative system scoring was used: ++++, more than 10-fold 
greater than levels detected in WT mice; +++, 2- to 10-fold greater than 
levels detected in WT mice; ++, equivalent to levels detected in WT mice; 
+, below levels detected in WT mice but above the assay’s detection 
limit; -, not detected. b Hemorrhage denotes evidence for both hematocrit 
reductions (i.e. anemia) and positive tests for fecal occult blood (i.e. 
bleeding). (It was demonstrated that T. gondii-infected mice exhibited 
anemia due to a decrease in both survival time of red blood cells in the 
circulation and erythropoiesis (p < 0.02)[423]). c Fibrin levels in IFN-γ/
TNF-α deficient mice were greatly elevated in comparison with WT mice 
yet significantly lower than those observed in IFN-γ-deficient animals. 

because the stable complex formation rate of this inhibitor with 
tissue plasminogen activator (t-PA), urokinase-type plasminogen-
activator (u-PA), and two-chain t-PA is described as K = 107M-1s-

1, which for PAI-1 is a few orders of magnitude higher than that for 
other inhibitors, such as PAI-2, protease nexin, α2-macroglobulin, 
C’1-esterase, and α2-antiplasmin (K = 100-105M-1s-1). Moreover, the 
plasma t-PA concentration is 70 pmol/L and its biological half-life is 
a few minutes, whereas the respective values for PAI-1 are 1 nmol/L 
and 2 to 3 hrs (in vitro, 37oC)[463-465]. 
    Mullarky et al[434] demonstrated an important role for the signal 
transducer and activator of transducer-1 (STAT1) in the suppression 
of infection-stimulated fibrin deposition via a STAT1-dependent 
pathway operating in endothelial cells, and interestingly, expression 
of PAI-1 also is STAT1 regulated[466]. IFN-γ suppresses expression 
of PAI-1 in endothelial cells[467], and as PAI-1 antagonizes fibrin 
degradation, thereby promoting fibrin deposition, STAT1-mediated 
suppression of PAI-1 expression in endothelial cells. This may 
well account for the effects of IFN-γ on fibrin deposition during 
infection[434]. In addition, IL-4 (an antiinflammatory cytokine) 
suppresses PAI-2 formation in stimulated human monocytes[427]. 

Transforming growth factor-β (TGF-β)
This interleukin belongs to the family of related cytokines that 
influence inflammatory processes, cell growth, differentiation, 
apoptosis, and gene expression[123,468-470]. TGF-β can upregulate the 
expression of integrin matrix receptors and inhibitors of matrix-
degrading enzymes, such as PAI-1[123,468-470], which plays an important 
role in blood coagulation and fibrinolysis. TGF-β1-induced PAI-
1 expression was found also in VSMCs[471], and both these major 
causative biofactors are important in the pathophysiology of vascular 
disease and tissue fibrosis. This cytokine has profibrotic properties 
because it induces the expression of many matrix proteins including 
collagens, fibronectin, tenascin, and thrombospondin, and the net 
effect is the increased synthesis and assembly of matrix that result 
in fibrotic changes in affected tissues[123]. Activation of TGF-β also 
involves generation of ROS and RNI that participate in development 
of atherosclerosis[123,472].

Nitric oxide (NO)
Vascular endothelium-derived NO, a major mediator of endothelium-
dependent vasodilation, has important antiinflammatory and 
antithrombotic properties, such as inhibiting leukocyte adhesion, 
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limiting platelet adhesion and aggregation, and the expression of PAI-
1[473-475].

Factor XIII (FXIII)
Catani et al[476] demonstrated that blood coagulation FXIII (fibrin 
stabilizing factor, plasma t1/2 = 3-5 days) was a target for NO both 
in vitro and in vivo. NO donors inhibited FXIII activity in a dose-
dependent manner and inhibition occurred by S-nitrosylation of a 
highly reactive cystein residue. NO exerts its biological effect by 
interacting with a variety of molecular targets, mainly using metals 
such as iron, tiols and oxygen as reactive groups. NO has also been 
shown to interact with heme- and non-heme iron-containing proteins, 
thus regulating their activities. Nitrosonium ion (NO+) can react 
with protein thiol groups causing S-nitrosylation, thus affecting the 
function of these proteins. Interestingly, hydrogen sulfide (H2S), an 
important gaseous signaling molecule that serves many important 
regulatory roles in pathophysiological states through NO, inhibited 
atherosclerosis through upregulating protein S-nitrosylation level in 
aorta VSMCs[477]. H2S significantly reduced the aortic atherosclerotic 
lesion area and inhibited lipid and macrophage accumulation and 
vascular smooth muscle cell proliferation in apoE-/- mice[477].

von Willebrand factor (vWF)
Elevated vWF levels are strongly associated with an increased 
risk of ischemic cardiovascular events. vWF probably participate 
in the process of atherogenesis, because results from animals 
studies suggested that at arterial branch point predilection sites, 
vWF deficiency or blockage had a protective effect against 
atherosclerosis[478]. Endothelial secretion of vWF from intracellular 
organelles is required for platelet adhesion to the injured vessel wall, 
because vWF binds platelets with collagen fibers in subendothelial 
layer and serves as a basis of platelets adhesion and aggregation. 
Torisu et al[479] showed that autophagy regulated endothelial cell 
processing, maturation and secretion of vWF (autophagy is a 
reparative process by which cytoplasmic components are sequestrated 
in double-membrane vesicles and degraded on fusion with lysosomal 
compartments).

Effect of blood flow rate
Since the blood flow rate is the main determinant of in vivo platelet-
vessel wall interaction[480], the platelets would tend to accumulate at 
the points of irregularities in blood flow dynamics, and might then 
release vasoactive agent(s) (possibly serotonin) and PAI-1[481], which 
is also liberated from endothelial cells of vessel walls during venous 
stasis[482]. It should be noted that the platelet pool of PAI-1 is four- to 
six-fold greater than that of plasma[481,483].

Serotonin (5-HT)
5-HT, a potent vasoconstrictor in the large cerebral arteries, is 
considered to play a key role in atherosclerosis and to be implicated 
in ischemic cerebrovascular events followed by delayed neuronal 
death[484]. 5-HT released from activated platelets, not only accelarated 
aggregation of platelets but also promoted mitosis, migration, and 
contraction of VSMCs, and these effects contributed to thrombus 
formation and atherosclerosis[484]. Serotonin stimulated significantly 
the expression of PAI-1 and tissue factor mRNA in a concentration- 
and time-dependent manner through 5-HT2A receptors, thus 
increasing procoagulant activity and reducing fibrinolytic activities 
of endothelial cells[485]. 5-HT-stimulated endothelial cells secreted a T 
lymphocyte-specific chemotactic cytokine with competence growth 
factor activity[486]. 5-HT alone and combined with thromboxane A2, 

potently induced vascular smooth muscle cell proliferation[487,488]. 
However, there is still controversy regarding the effects of 5-HT 
on endothelial cell proliferation[489]. Finally, Suguro et al[490] found 
that 5-HT increased ACAT-1 activity in a concentration-dependent 
manner in primary monocyte culture, and suggested that 5-HT may 
play an important role in macrophage-derived foam cell formation. It 
must be noted that hyperserotoninemia has been reported in autistic 
and mentally retarded children[491,492], as well as in the first degree 
relatives of these children[493,494], and notably, Prandota et al[495] found 
a significant association between autism and T. gondii infection (c2 = 
8.11, p < 0.0043; OR = 7.2; 95% CI: 1.56-33.7). 

Glycated LDL
Artwohl et al[496] found that diabetic LDL triggered apoptosis 
in vascular endothelial cells. It was reported that glycated LDL 
increased adhesion molecule expression[497] and modulated the 
fibrinolytic potential of vascular endothelial cells[498]. Furthermore, 
both in vitro- and in vivo-glycated LDL altered vasoactive response 
by attenuating NO synthesis[499]. The toxicity of glycated LDL and 
its role in the pathogenesis of atherosclerosis appeared to be related 
to its prolonged presence in the circulation and impaired cellular 
uptake[498,500]. It should be noted that T. gondii infection acquired 
prenatally and/or after birth may be responsible for development of 
both type 1 and 2 diabetes mellitus[501].

Magnesium deficiency
Maier et al[502] demonstrated that low magnesium concentrations 
reversibly inhibited endothelial cell proliferation, probably due to 
an up-regulation of IL-1 synthesis, a proinflammatory cytokine and 
potent inhibitor of endothelial cell growth. They observed also the 
up-regulation of VCAM-1 and PAI-1 levels after Mg deficiency. 
    All together, overproduction of proinflammatory cytokines, such as 
IFN-γ, TNF-α, and NO, during latent chronic T. gondii infection may 
lead to serious physiopathological disturbances in the host, including 
anemia, hemorrhage, and blood coagulation disorders, i.e. the 
abnormalities that also play an important role in the clinical course of 
atherosclerosis. 

IMPORTANT ROLE OF IRON IN DEVELOP-
MENT OF ATHEROSCLEROSIS AND NEURO-
DEGENERATIVE DISEASES 
Atherosclerosis
According to the “iron hypothesis”, iron overload is believed 
to be detrimental for the cardiovascular system, thus promoting 
atherosclerosis development and progression[503,504]. Excess of iron 
generates oxidative stress that hallmarks neurodegenerative diseases 
and atherosclerosis, a frequent disorder of aging[505]. Patients with 
Alzheimer’s disease and Parkinson’s disease showed a dramatic 
increases in their brain iron content which may contribute to the 
pathogenesis of these disorders, but so far the reason for iron 
accumulation is unknown[506]. 
    Iron accumulates in human atherosclerotic lesions[507], and can 
enter into the lesion in the form of free hemoglobin (Hb) that is 
released upon intravascular hemolysis or intraplaque hemorhage[508]. 
Cell-free Hb when oxidized releases heme and induces oxidative 
modification of LDL[509]. Iron mediates the oxidative modification 
of LDL, an important contributing factor to the pathogenesis of 
atherosclerosis[510]. Cholesterol levels in atherosclerotic lesions 
correlated with iron deposits[511], and within the plaque, iron 
deposition and ferritin induction have been observed in endothelial 
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cells and macrophages in early human lesions, and additionally in 
VSMCs in late lesions[503]. Interestingly, in hypercholesterolemic pigs, 
Gerrity[512] found that monocytes were adherent to the lesion areas of 
aortic endothelium, in endothelial junctions, and in the intima. Intimal 
monocytes and altered intimal monocytes with enlarged cytoplasm 
and containing few lipid droplets were found to be phagocytic 
by their uptake of ferritin, which had penetrated the intima after 
intravenous injection. Circulating monocytes and those adherent to 
the endothelial surface did not contain ferritin in the animals[512]. 
    Hb derived iron is an important factor in determining macrophage 
differentiation and function in areas of intraplaque hemorrhage within 
human atherosclerosis. Habib et al[160] showed that macrophages in 
areas of intraplaque hemorrhage demonstrated reduced intracellular 
iron and ROS which triggers production of antiinflammatory 
cytokines as well as genes involved in cholesterol efflux. Iron is a 
powerful catalyst in the generation of toxic free hydroxyl radicals 
through the oxidation of its ferrous (Fe2+) (very toxic) to ferric 
(Fe3+) via the Fenton reaction (Fe2+ + H2O2 —> Fe3+OH- + OH)[513], 
which are deleterious to living cells and most macromolecules[514]. 
Hydroxyl radicals can depolymerize polysaccharides, cause DNA 
breaks, inactivate enzymes, and initiate lipid peroxidation[160,515-517]. 
Extracellular ferric anion is bound to human serum lactoferrin (Lf) 
and transferrin, and transferrin is the iron transporter that allows 
cellular iron uptake[518]. Lf and transferrin maintain Fe3+ in a soluble 
and stable oxidation state, avoiding the generation of toxic free 
hydroxyl radicals[514].
    Hemolysis is often a result between the interaction of erythrocytes 
and mature atheromas resulting in the transition of ferrous to ferric 
forms of Hb which additionally leads to lipid peroxidation[519], 
triggering endothelial activation, smooth muscle cell proliferation 
and macrophage activation[503]. Oxidized form Hb can also act as a 
proinflammatory agonist that targets vascular endothelial cells[520]. 
    Hydrogen peroxide (H2O2) generated by mitochondria and other 
organelles permates in the lumen of secondary lysosomes which 
contain iron derived from cellular structures undergoing autophagic 
degradation[521,522]. The interaction between reactive ferrous iron and 
H2O2 resulted in the generation of hydroxyl radicals inducing lipid 
peroxidation and ceroid formation[523]. Lee et al[524] reported that iron 
and ceroid deposits colocalized either extracellularly or intracellularly 
in foam cell-like macrophages or SMCs of advanced atherosclerotic 
plaques. Many cells in advanced human plaques contained a large 
number of ceroid-containing lysosomes, and impaired autophagy 
stimulates further accumulation of damaged mitochondria, increased 
ROS generation, additional accumulation of iron and enhanced non-
degradable oxidation products such as ceroid[521].

T. gondii infection
The parasite must acquire nutrients from its host to survive and 
ensure its proliferation[525]. T. gondii is an auxotroph for iron[526,527], 
cholesterol[149,528], tryptophan[529], arginine[526,530], polyamines[531], 
purines[532], and other essential nutrients[146]. Parasites have an ability 
to acquire growth-essential iron from their hosts[533]. Possible sources 
of intracellular host iron include heme, iron released from transferrin 
at pH 5.5-6, and ferritin[533]. The metal is needed for catalysis of 
DNA synthesis and for a variety of enzymes concerned with electron 
transport and energy metabolism. Iron may also focus influx of 
neutrophils to sites of infection by generating oxidant-sensitive 
mediators[534]. 
    Dimier and Bout[527] demonstrated that T. gondii invaded and 
proliferated in cultured primary rat enterocytes. Intestinal epithelial 
cells represent a rapidly renewing cell population, and their cell 

turnover has a mean duration time of 2-3 days in vivo and a few 
hours in vitro[535]. Experiments that used Fe2+ salt as well as carrier 
and chelator suggested that IFN-γ-treated enterocytes inhibited T. 
gondii replication within these cells by limiting the availability of 
intracellular iron to the parasite[527,536]. Data from an in vitro model of 
human monocytes infected with other pathogens, such as Legionella 
pneumophila[537], Histoplasma capsulatum[538], or Trypanosoma 
cruzi[539] also have shown that limiting the availability of iron may 
represent a broadly effective intracellular antimicrobial mechanism. 
IFN-γ inhibited the replication of T. gondii also in endothelial cells[56], 
fibroblasts[540], and retinal pigment epithelial cells[57]. In fibroblasts 
and retinal pigment epithelial cells, the mechanism of inhibition was 
via tryptophan starvation, while in astrocytes, the mechanism of 
IFN-γ inhibition was independent of iron deprivation and reactive 
oxygen intermediates[541].
    Several pivotal proinflammatory cytokines such as IFN-γ, TNF-α, 
IL-1, and IL-6 (these molecules are profusely generated during 
chronic T. gondii infection) participated in iron homeostasis, and 
the sequestration of this metal, mediated by these biomediators, 
was considered protective[542]. Proinflammatory cytokines and the 
acute phase protein hepcidin affected iron homeostasis leading to 
the accumulation of the metal ion in macrophages and subsequently 
to anemia of inflammation[543]. Hepcidin inhibited iron efflux 
through binding to and induction of the degradation of ferroportin1, 
a multipass protein found in the basolateral membrane of 
enterocytes[544]. Iron and the hormone erythropoietin modified innate 
immune responses by influencing IFN-γ-mediated (iron) or NF-κB 
inducible (erythropoietin) immune effector pathways in macrophages. 
Thus, the macrophages loaded with iron lost their ability to kill 
intracellular pathogens via IFN-γ-mediated effector pathways, such 
as NO generation[543]. On the other hand, NO directly controlled 
intracellular iron metabolism by activating iron regulatory protein, 
a cytoplasmic protein that regulates ferritin translation[543]. It was 
reported that NO mediated non-heme iron release from ferritin[545], 
and ferritin, a hepatic protein and cytoprotective antioxidant of 
endothelium, may counteract some redox activity via ferroperoxidase 
in the vasculature[546]. Iron also regulated NOS activity by controling 
nuclear transcription of cytokine-inducible NOS mRNA[541]. Weiss et 
al[547] showed that increased intracellular iron levels led to a decrease 
of NOS activity, whereas depletion of intracellular iron strongly 
enhanced the enzyme activity in IFN-γ/LPS-stimulated macrophages, 
i.e. alterations (increases as well as decreases) in cellular iron 
availability caused regulation of NOS transcription in J774 cells[539]. 
    Macrophages and other host cells activated by IFN-γ can be 
induced to form a flavoprotein that converts L-arginine to NO + 
L-citrulline[548]. NO causes efflux of non-heme iron from infected 
host cells. In the absence of L-arginine, IFN-γ-induced infected cells 
can lower their net uptake of iron. Cellular depletion of the metal via 
either mechanism suppresses DNA synthesis as well as the functioning 
of aerobic respiratory enzymes. Macrophage regulation of growth 
of other host cells during embryogenesis, immune responses, or 
immunosurveillance might involve iron depletion[548].
    Novel atherosclerotic markers indicating neutrophil activation 
represent Lf, an innate immune system protein with antiinflammatory 
and antioxidant properties[549,550]. Immunohistochemical staining of Lf 
was found in advanced human atherosclerotic carotid artery, as well as 
its co-localization with neutrophils and T and B lymphocytes in aortic 
plaques[551]. Lf appeared to be one of nine genes specifically induced 
predominantly in atherosclerotic aortic plaques[551]. Lf, a natural 
defense iron-binding protein is produced and secreted by glandular 
epithelial cells and circulating polymophonuclear neutrophils, and 
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found mainly in milk, saliva, mucosal and other secretory fluids, has 
been found to possess antiinflammatory, antibacterial, antiparasitic, 
antimycotic, antiviral, and antineoplastic activity[552,553]. A principal 
function of Lf is that of scavenging free iron in fluids and inflamed 
areas so as to suppress free radical-mediated damage and decrease the 
availability of the metal to invading microbial and neoplastic cells. 
Lf normally maintains an iron saturation value of 25-35%, and at 
values above 30%, transferrin (present mainly in serum and lymph) 
begins to lose its effectiveness as a scavenger of hazardous iron[552,554]. 
Lf, a 78-kDa glycoprotein of the transferrin family, is structurally 
similar to transferrin with about 44% homology, and similar to 
transferrin Lf can reversibly bind two atoms of iron (Fe3+). T. gondii 
utilize iron bound to inorganic or organic chelates, such as serum 
Lf and transferrin and/or intracellular iron compounds (Hb, hemin, 
ferritin and others[555,556]. Iron uptake by the parasite was limited by 
IFN-γ through an unknown mechanism[518]. Dziadek et al[557] found 
in human CaCo-2 epithelial cells, and mouse L929 fibroblasts, that 
extracellular T. gondii tachyzoites of BK strain (genotype I) bind 
specifically human serum Lf but not transferrin, and the binding 
was concentration-dependent. Moreover, the multiplication of the 
parasite was inhibited by human Lf high concentrations (≥ 100 mg/
mL) in both cell lines[553]. Virtually all cells express a transferrin 
receptor on their surface, and the quantity of receptor molecules 
reflects the cellular iron requirements[518]. It should be noted that 
host cell expression of transferrin receptor was upregulated in T. 
gondii infected cells, suggesting that the parasite utilized the host 
endocytic pathway for iron acquisition[518,526]. Since the receptors 
for human Lf also are expressed on many human cells, they could 
provide a mechanism for the interaction between Lf binding T. gondii 
tachyzoites and host cells[558]. It appeared that the presence of iron 
was required for the Lf molecule to stimulate an increase of uptake 
and killing of an intracellular parasite by murine macrophages and 
human monocytes[559,560], especially that T. gondii binds LF and 
not transferrin[557]. T. gondii membrane proteins ROP4 and ROP2 
were found to be involved in human Lf acquisition[561]. Human Lf 
displayed cytoprotective (in a concentration-dependent manner) and 
antioxidant effects against H2O2-induced oxidative stress in human 
umbilical vein endothelial cells[562]. Immunomodulatory effects of Lf 
include interacting with monocytes and macrophages and modulating 
their function during inflammatory and infectious processes, 
e.g., increasing cytotoxic activity, cytokine production (TH1) and 
expression of surface molecules[563], enhancing phagocytosis, 
induction of apoptosis, and promoting TH2 cell responses in intestinal 
mucosa[564]. Moreover, Lf displayed beneficial effects on plasma 
lipid levels, because circulating Lf levels were inversely associated 
with fasting triglycerides (p = 0.001)[565], and Lf administration led 
to decreased plasma triacylglycerol and free fatty acids levels, and 
to increased plasma HDL-cholesterol concentration accompanied 
by decreased hepatic cholesterol and triacylglycerol contents in 
rodents[566]. 
    In summary, iron accumulates in human atherosclerotic lesions and 
play an important role in the pathogenesis of these disorders because 
this metal may focus influx of neutrophils to sites of infection by 
generating oxidant-sensitive mediators. T. gondii is an auxotroph 
for iron and other nutrients. Experimental data suggested that IFN-
γ-treated enterocytes inhibited T. gondii replication within these 
cells by limiting the availability of intracellular iron to the parasite. 
Proinflammatory cytokines and the acute phase protein hepcidin 
affected iron homeostasis leading to the accumulation of the metal 
ion in macrophages and subsequently to anemia of inflammation. Iron 
modified innate immune responses by influencing IFN-γ-mediated 

immune effector pathways in macrophages. The macrophages loaded 
with iron lost their ability to kill intracellular pathogens via IFN-γ-
mediated effector pathways, such as NO generation. NO mediated 
non-heme iron release from ferritin, and ferritin may counteract some 
redox activity in the vasculature. Extracellular T. gondii tachyzoites 
bound specifically human serum Lf, and the parasite membrane 
proteins ROP4 and ROP2 were involved in Lf acquisition. It must be 
noted that Lf is one of 9 genes specifically induced predominantly 
in atherosclerotic aortic plaques, and its principal function was that 
of scavenging free iron in fluids and inflamed areas and decrease 
the availability of the metal to invading microbial cells. Thus, a 
marked increase of iron content in both atherosclerotic lesions and 
brain tissues in neurodegenerative diseases may reflect a defense 
of the host against infection with the parasite and contribute to the 
pathogenesis of these disorders, especially that iron regulates NOS 
activity by controling nuclear transcription.

POSSIBLE LINK BETWEEN ELEVATED PLAS-
MA LEVELS OF TGF-β1 IN ATHEROSCLE-
ROSIS, AND T. gondii INFECTION. DUAL 
ROLE: TGF-β INHIBITS INFLAMMATION BUT 
INCREASES INTRACELLULAR PARASITE REP-
LICATION 
Atherosclerosis
Inflammation play an important role in atherosclerosis[567]. In 
advanced atherosclerosis, the serum concentration of active 
TGF-β was found to be severely depressed[568,569]. Blann et al[570] 
demonstrated also a significantly increased serum levels of TGF-β 
receptors in atherosclerotic patients with ischemic heart disease 
and peripheral vascular disease, which correlated with serum total 
cholesterol levels (p < 0.001). Several authors further established 
that this cytokine reduced atherosclerosis by dampening T cell 
activation[571,572], while disruption of TGF-β signaling in T cells 
resulted in acceleration of this inflammatory process[571,573,574]. 
    TGF-β belongs to the family of related cytokines that influence 
cell growth, differentiation, apoptosis, inflammatory processes, 
and gene expression[468-470]. This is a multipotent cytokine with 
antiinflammatory activities, such as inhibition of proliferation, 
maturation and/or activation of macrophages, lymphocytes and 
NK cells[575-578]. TGF-β is an important regulator of inflammation, 
being proinflammatory at low concentrations and antiinflammatory 
at high concentrations[579]. Activation of TGF-β involves reactive 
oxygen species[472]. This cytokine is secreted by a number of cells, 
including regulatory T cells, macrophages, endothelial cells, dendritic 
cells, platelets, and vascular smooth muscle cells[580,581]. Tonkin and 
Haskins[582] demonstrated that regulatory T cells transfer caused a 
reduction in the number of effector TH1 T cells and macrophages, and 
also inhibited effector T cell cytokine and chemokine production. 
    TGF-β has profibrotic properties because it induces the expression 
of many matrix proteins including collagens, fibronectin, tenascin, 
and thrombospondin, and the net effect is the increased synthesis 
and assembly of matrix that result in fibrotic changes in affected 
tissues[123]. TGF-β system mediated diabetic renal hypertrophy and 
fibrosis build-up due to the extracellular matrix production[583,584], 
the cytokine was found to induce vaginal tissue fibrosis in animal 
model[585], and the beta cell hypertrophy, beta cell damage and 
fibrosis, with reduction in insulin secretion, was characteristic for 
patients with type 2 diabetes mellitus[501,586]. 
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    TGF-β plays a critical role in the suppression of lymphocyte 
proliferation and differentiation therefore preventing hazardous 
autoimmune responses, and its immunosuppressive effects are 
mediated through the inhibition of TNF-α and IL-1[587] and blocking 
the induction of adhesion molecules like ICAM-1 and VCAM-1[588-

590]. Filisetti and Candolfi[373] reported that TGF-β is well known for 
its immunosuppressive action on leukocyte cell lines. This cytokine 
was found to be an antagonist of TNFα, TNF-β, IFN-γ and IL-
2[591,592]. The antiinflammatory action of TGF-β control development 
of immunopathological processes related to TH1 immune response in 
the brain[593] and the intestines[594]. 
    TGF-β can also upregulate the expression of integrin matrix 
receptors and inhibitors of matrix-degrading enzymes, such as 
PAI-1[471], which plays an important role in blood coagulation and 
fibrinolysis. TGF-β1-induced PAI-1 expression was found also in 
VSMCs[471], and both these major causative biofactors are important 
in the pathophysiology of tissue fibrosis and vascular disease. 

T. gondii infection
Host protection to T. gondii infection involves TH1 type immune 
response of inflammatory cells, lymphocytes and macrophages with 
enhanced production of IFN-γ, TNF-α, and IL-1β[373,595]. Activation 
of macrophages plays an important role in the host resistance against 
intracellular pathogens. Langermans et al[592] found that the IFN-γ-
induced toxoplasmastatic activity of macrophages was inhibited by 
TGF-β (mean fold increase = 6.3), which was also found for the IFN-
γ-induced production of TNF-α, RNI and PGE2 by macrophages. 
It appeared that inhibition of TNF-α production was a key factor 
in the TGF-β-induced suppression of macrophage activation with 
respect to toxoplasmastatic activity and RNI production[592]. Activated 
macrophages by IFN-γ inhibit parasite replication through a number 
of potent microbicidal mechanisms such as oxidative[596] and non-
oxidative[597] mechanisms, as well as the induction by IFN-γ of 
enzyme indoleamine 2,3-dioxygenase that degrades tryptophan, 
which is required for the parasite replication[598]. Barbosa et al[599] 
showed that treatments with IL-10 or TGF-β1 induced a considerable 
augmentation in both T. gondii intracellular replication and invasion 
into BeWo trophoblastic cells, in contrast with HeLa cells. BeWo cells 
were unable to control replication of the parasite even in the presence 
of exogenous IFN-γ[600]. Nagineni et al[210] reported that in human 
retinal pigment epithelial cultures TGF-β also enhanced parasite 
replication. Soluble extracts of T. gondii stimulated secretion of both 
TGF-β1 and TGF-β2 significantly. T. gondii infection completely 
inhibited secretion of the active form of TGF-β2. In addition, 
Malipiero et al[601] found that endogenous TGF-β suppressed host 
defense against pathogen infection also in the central nervous system. 
    TGF-β is downregulating tissue inflammation and immunity in the 
gastrointestinal tract (intraepithelial lymphocytes via the secretion of 
TGF-β are critical in preventing inflammation of the small intestine 
villi following parasite infection), the central nervous systems, and the 
eye, where latent T. gondii reside and often become reactivated[594,602,603]. 
TGF-β was found to increase in vitro replication of T. gondii in retinal 
cells[604]. Elevated expression of TGF-β in vitreous, retina and retinal 
pigment epithelium has been correlated closely with retinal fibrosis 
and choroidal neovascularization[210]. One cannot therefore exclude 
that the development of fibrotic changes in atherosclerotic lesions are 
associated with the increased levels of this cytokine due to T. gondii 
infection because TGF-β belongs to the biomediators favouring growth 
of the parasite[605], and at the same time mediates balance between 
inflammation and fibrosis during plaque formation[606]. 
    Activated macrophages control growth by NO production[607]. 

However, T. gondii active invasion inhibits NO production, allowing 
parasite persistence. The mechanism used by T. gondii to inhibit 
NO production persisting in activated macrophages depends on 
phosphatidylserine exposure. TGF-β1 led to iNOS degradation, 
actin filament (F-actin) depolymerization, and lack of NF-κB in the 
nucleus[607]. 
    Taken together, it seems that the increased levels of plasma 
TGF-β reported in patients with atherosclerosis exert both beneficial 
and harmful effects because although this cytokine inhibits 
inflammation and autoimmunity, at the same time increases T. gondii 
replication in the host cells with further development of unwanted 
pathophysiological consequences, including fibrotic changes in 
atherosclerotic lesions. Final clinical effect of TGF-β depends mainly 
of its serum levels, being proinflammatory at low concentrations and 
antiinflammatory at high levels.

MAST CELLS (MCs) PLAY AN IMPORTANT 
ROLE IN THE PATHOGENESIS OF ATHERO-
SCLEROSIS, AND SIMULTANEOUSLY EXERT 
A BENEFICIAL EFFECT IN HOST DEFENSE 
AGAINST T. gondii INFECTION
Atherosclerosis
MCs are important in the development of both innate and 
acquired immunity, inflammation, and atherosclerosis[608-613]. MCs, 
macrophages, and neutrophils release TNF-α, IFN-γ, and IL-6 that 
induce expression of adhesion molecules in vascular endothelium 
and recruit of leukocytes, which is essential to the pathogenesis 
of vascular inflammatory diseases[614]. MCs by virtue of mediator 
secretion and degranulation, can regulate the function of endothelial 
cells, T lymphocytes, macrophages, and VSMCs[613]. The cells 
produce a number of biomediators, including histamine, tryptase, 
chymase, cathepsin G, platelet activating factor, leukotrienes, 
thromboxanes, prostaglandins, matrix-degrading metalloproteinases 
(MMP-1, MMP-3), inflammatory cytokines (TNF-α, IL-4, IL-5, IL-6, 
IL-13), and chemokines (MCP-1, IL-8, RANTES)[613]. MCs can assist 
in the recruitment of monocytes and lymphocytes into vascular tissue, 
thereby propagating the proinflammatory response[614], and are present 
in atherosclerotic lesions and thrombotic sites[615,616]. MCs were 
found in close association with macrophages and extracellular lipids, 
and at the sites of foam cell formation in atherosclerotic lesions[616]. 
MCs facilitate foam cell formation by promoting the formation of 
LDL aggregates, native and oxLDL uptake by macrophages, and 
by interfering with macrophage cholesterol removal by HDL[615-622]. 
Moreover, the cells provide a general anticoagulant function through 
actions of tryptase (fibrinogenolysis, inactivation of high molecular 
weight kininogen), heparin proteoglycans (anticoagulant, inhibition 
of platelet aggregation), and therefore might slow thrombus 
formation at the sites of atheromatous plaque rupture[613,620]. 

T. gondii infection
The parasite is a potent TH1 type cytokine inducer, and while 
these proinflammatory cytokines are required to survive infection, 
their overproduction may lead to pathology and death of the host. 
Effector cells against T. gondii include monocytes[617], IFN-γ-
activated macrophages[420,624], neutrophils[623], and platelets[417]. 
MCs also participate in host defense against the parasite. Table 23 
presented effects of mast cells incubation with T. gondii tachyzoites 
and influence of two different selective leukotriene inhibitors 
(5-lipooxygenase inhibitor A-63162 and 5-lipoxygenase-activated 
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protein inhibitor MK-886) on MC degranulation and T. gondii 
cytotoxicity[625]. 
    MCs cells play a crucial role in the development of a protective 
immune response during resistance against T. gondii oral 
infection because of their ability to release proinflammatory 
mediators[625-629]. The cells degranulate and release LTB4, which 
damage tachyzoites[625]. Earlier study showed that LTB4-induced T. 
gondii cytotoxicity was characterized by vesiculation of the surface 
membrane and loss of the cytoplasmic contents of the organisms[624], 
and the same cytotoxic changes were observed in tachyzoites after 
incubation with MCs[625]. Although the parasite inhibited mast 
cell degranulation by suppressing the mobilization of intracellular 
Ca2+ mediated by C-phospholipase[630], many biomediators, 
such as IL-6, can also be released from mast cells “selectively”, 
without degranulation[631,632]. In addition, it appeared that reactive 
oxygen species were not implicated in the mast cell-mediated 
toxoplasmacidal activity[625].
    Taken together, MCs play an important role in both development 
of atherosclerosis and host defense against T. gondii infection. 

PLATELETS AND SEROTONIN (5-HT) EN-
HANCE MACROPHAGE FOAM CELL CELL 
FORMATION AND ARE CYTOTOXIC TO T. 
gondii TACHYZOITES (IN THE ABSENCE OF 
ANTIBODY) 
Atherosclerosis
5-HT, a potent vasoconstrictor in the large cerebral arteries, is 
considered to play a key role in atherosclerosis and to be implicated 
in ischemic cerebrovascular events followed by delayed neuronal 
death[484]. Ban et al[633] found that plasma 5-HT concentrations, serum 
levels of hepatocyte growth factor (HGF), LDL cholesterol, and hsCRP, 
carotid artery intima-media thickness (IMT) and plaque frequency 
were significantly greater in patients with vascular dementia than in 
controls. There was a significant positive correlation of max IMT with 
5-HT or HGF levels, and the authors suggested that increased plasma 
5-HT levels and carotid atherosclerotic plaques may be involved in the 
pathogenesis and progression of vascular dementia[633].
    Atherogenesis involves platelet activation with subsequent 
serotonin release. 5-HT stimulated monocyte adhesion[484,634], and 
enhanced macrophage foam cell formation with increased uptake 
of oxLDL (protein concentration 10-75 mg/L)[188,635]. Suguro et 
al[188] found that during differentiation of cultured human monocyte 
into macrophages expression of ACAT1 protein increased in a 
time-dependent manner. Serotonin increased ACAT1 activity in a 
concentration-dependent manner also in primary monocyte culture. 
In addition, 5-HT may contribute to inflammatory activation of 
the vessels during atherogenesis because it increased synthesis 
of IL-6 in human VSMCs, and this cytokine is a key molecule in 
chronic inflammation and was implicated in the progression of 
atherosclerosis[636].
    5-HT released from activated platelets, not only accelerated 
aggregation of platelets but also promoted mitosis, migration, and 
contraction of VSMCs, and these effects contributed to thrombus 
formation and atherosclerosis[484]. Serotonin stimulated significantly 
the expression of PAI-1 and tissue factor mRNA in a concentration- 
and time-dependent manner through 5-HT2A receptors, thus 
increasing procoagulant activity and reducing fibrinolytic activities 
of endothelial cells[465]. 5-HT-stimulated endothelial cells secreted 
a T lymphocyte-specific chemotactic cytokine with competence 

Table 23 Ultrastructural morphometric changes of MCs after interaction 
with T. gondii tachyzoites and effects of the selective inhibitors on these 
alterations (acc. to Henderson et al[625]; with own modifications).

Reaction mixture

Mast cell 
degranulation, 

degranulated cells/
total cells (%)

T. gondii cytotoxic 
changes, damaged T. 

gondii/total 
T. gondii (%)

Mast cells 27/305 (8.9) -

T. gondii - 42/580 (7.2)

Mast cells + T. gondii 278/398 (69.8) 134/306 (43.8)
Mast cells + T. gondii + 
A-63162 71/341 (20.8) a 32/234 (13.4) a

Mast cells + T. gondii + 
MK-886 44/206 (21.4) a 36/300 (12.0) a

Mast cells + T. gondii + 
indomethacin 252/399 (63.2) 144/389 (37.0)

Mast cells (2 x 106) and T. gondii RH strain (1.2 x 107) were incubated in 
absence or presence of A-63162 (10-6 M), MK-886 (10-6 M), or indomethacin 
(10-5 M) in 1 mL of Tyrode’s buffer for 30 min at 37℃. Percent of 
degranulated mast cells and damaged tachyzoites was determined by 
morphometry. Data are means of 2-3 experiments for each condition. a p < 
0.05 vs mast cells + T. gondii.

growth factor activity[466]. This biomediator, alone and combined 
with thromboxane A2, potently induced VSMC proliferation[467,468], 
but there is still controversy regarding its effects on endothelial cell 
proliferation[469].

T. gondii infection
Platelets may play an important role in the host defense against 
T. gondii. Human platelets were found to be cytotoxic to the 
parasite tachyzoites[637]. Adherence of platelets to the pahogen 
and disruption of surface membranes and internal architecture 
were observed ultrastructurally. The interaction of T. gondii with 
platelets resulted in a marked increase in TXB2 generation compared 
with that by unstimulated platelets[631]. Moreover, Henderson et 
al[638] demonstrated that human platelets incubated with T. gondii 
tachyzoites released oxygenated products of both arachidonic acid 
and linoleic acid, 13-hydroxyoctadecadienoic acid (13-HODE) 
(87.7%) and 9-HODE (12.3%). Further study[639] revealed that 13-
HODE, a product of linoleic acid metabolism, at concentrations 
higher or equal to 10(-8) M rapidly induced cytotoxic changes in 
the parasite, including leakage of cytoplasmic contents in the space 
between the inner and outer parasite bilayer membrane units, which 
was followed by intracellular vacuolation and loss of cytoplasmic 
contents. Interestingly, Shamseddin et al[640] showed that conjugated 
linoleic acid, a natural component of milk and diary products, in 
concentrations 50-250 mM induced apoptosis in virulent RH and 
avirulent Teheran strains of T. gondii, in HeLa cells. 

T. gondii INFECTION INCREASES LEPTIN 
LEVELS WHICH PLAY AN IMPORTANT ROLE 
IN TRIGGERING INFLAMMATION AND 
PARTICIPATE IN DEVELOPMENT OF ATH-
EROSCLEROSIS 
Atherosclerosis
Leptin, the adipocyte-secreted hormone, is mainly produced 
by white adipose tissue and circulates in the blood in levels 
proportional to the fat mass, and both central and peripheral 
administration of leptin inhibited apetite and adiposity[641,642]. This 
adipocytokine modulates immune responses[643], metabolism and 
inflammation[644], and is a potential linker between obesity and 



EROSCLEROTIC ARTERIES. INFECTION OF 
THE HOST VASCULAR ENDOTHELIAL CELLS 
BY T. gondii TACHYZOITES BECOMES AN 
ADDITIONAL SOURCE OF SIMILAR EN-
ZYMES BECAUSE THE PARASITE EXPRESSES 
FIVE MEMBERS OF THE CATHEPSIN PRO-
TEASES, SUCH AS ONE CATL-LIKE, ONE 
CATB-LIKE, AND THREE CATC-LIKE PROTE-
ASES
Atherosclerosis
Cathepsins contribute to several pathophysiological processes, 
including antigen presentation in the immune system[662,663], 
neuropeptide and hormone processing[664], and collagen turnover 
in bone and cartilage[665]. These enzymes have strong elastolytic 
and collagenolytic properties that form a distinct subgroup of 
atherosclerosis-related proteases because they affect extracellular 
matrix degradation and modulate inflammation, immune responses, 
and cellular functions[666-670]. Increased expression and translocation 
of lysosomal cathepsins contribute to macrophage apoptosis in 
atherogenesis[669]. 
    Cathepsins of the cysteine protease family, such as CatB, C, H, F, 
K, L, O, S, V, W, and X/Z[671] function in terminal protein degradation 
optimally whithin acidic lysosomes[672], and play an important role in 
development of atherosclerosis-based cardiovascular diseases[673-678]. 
Cathepsins are expressed in macrophages, endothelial and vascular 
smooth muscle cells (VSMCs) of atherosclerotic lesions[677]. Studies 
on vascular cells have shown that atherosclerosis-associated 
proinflammatory cytokines enhanced cysteine cathepsin expression 
and activity. It was demonstrated that although VSMCs and 
macrophages physiologically express negligible levels of CatL, S, 
and K, incubation of these cells with proinflammatory cytokines, such 
as TNF-α, IL-1β, and IFN-γ, significantly induced the expression and 
secretion of those cathepsins and their collagenolytic and elastolytic 
activities[673,676,679]. 
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chronic inflammation[645]. Structurally, it resembles IL-2 in particular 
and is a crucial T-cell growth factor[646], and a potent negative 
regulator of IL-2 induced NK cell cytotoxicity[647]. The levels of this 
biomediator were increased in infections and autoimmune disorders, 
or after exposure to inflammatory stimuli such as LPS, TNF-α, and 
IL-1[641,648]. 
    Leptin accelerated CEs accumulation in human monocyte-derived 
macrophages by increasing ACAT1 expression and cholesterol 
efflux from these cells[208]. In human atherosclerotic lesions, leptin 
mediated atherosclerosis in vitro and in vivo, and induced (at doses 
10-40 ng/mL) proliferation of the human umbilical vein endothelial 
cells and elevation of matrix metalloproteinases (MMPs) MMP-
2 and MMP-9 expression, in a dose-dependent manner[649]. Leptin 
caused also concentration- and time-dependent increases in IL-6 
production[390], which is the predominant mediator of the acute 
phase response, an innate immune mechanism triggered by infection 
and inflammation[388,389]. IL-6 levels were elevated in chronic 
inflammatory conditions, such as rheumatoid arthritis[650,651].

T. gondii infection
It was demonstrated that increased leptin levels correlated with 
enhanced concentrations of inflammatory markers in morbidly obese 
individuals[645], and recently, Reeves et al[652] reported a significant 
positive association between T gondii seropositivity and obesity 
(p = 0.01). Individuals who were obese had a markedly higher T. 
gondii IgG titers compared to normal weight participants[652]. Also 
Baltaci and Mogulkoc[653] found that rats infected with T. gondii 
had significantly increased plasma leptin levels four weeks after the 
intraperitoneal injection of live parasites as compared with control 
animals (Table 24). 
    It must be emphasized that in obese prepubertal children 
statistically significant positive correlations were found between 
leptin and IL-2, IL-1β, IL-6 or TNF-α serum concentrations[654] 
(Table 25), and interestingly, psychotropic drugs that induce 
weight gain in psychiatric patients also clearly activated the TNF-α 
system[655].
    Multiple cytokines and acute inflammation that raise leptin 
levels may have a potential role also in inflammatory anorexia[641], 
especially that leptin treatment increased energy expenditure (oxygen 
consumption) in animals[656]. It should be noted that in mice with T. 
gondii infection the dual anorexia and hypermetabolic states were 
associated with the elevation of TNF-α, IL-1β, IL-2, IL4, IL-5, IL-
6, IL-10, and IFN-γ levels[657,658], and it was reported that various 
cachectic-anorexic conditions resulted from interactions among 
cytokines and neurotransmitters as mediators of neurologic and 
neuropsychiatric manifestations of disease[659,660].
    In summary, T. gondii infection caused increased leptin levels, 
which were found to be correlated with the enhanced concentrations 
of inflammatory markers in morbidly obese individuals, and recently, 
a significant positive association between T gondii seropositivity and 
obesity has been reported. Because latent chronic T. gondii infection 
has a high prevalence worldwide, and 23% of the European adult 
population are now obese, while approximately 57% of the world’s 
adult population is projected to be obese or overweight by 2030[661], 
atherosclerosis associated with inflammation and obesity represent a 
serious global health hazard. 

IMPORTANT ROLE OF CYSTEINE CATHEP-
SINS (CAT) IN FOAM CELL FORMATION 
AND GENERATION OF AMYLOID IN ATH-

Table 24 Body weight and plasma leptin concentrations in rats 
intraperitoneally infected with T. gondii (acc. to Baltaci & Mogulkoc[653], 
with own modification).

Study group Body weight before 
the study (g)

Body weight after 
four weeks (g)

Plasma leptin 
levels (ng/mL)

Control rats 
(n = 10) 266.00 ± 32.81 270.50 ± 33.70 4.09 ± 1.15

Infected 
animals 
(n = 10)

263.50 ± 44.16 269.50 ± 42.78 7.53 ± 1.55 a

Results represent mean ± SD. a Statistically significant result (p < 0.01). 

Table 25 Serum proinflammatory cytokines and leptin concentrations 
in prepubertal obese children compared with controls (acc. to Aygun et 
al[654]; with own modification).
Parameter Obese children Controls P value

Leptin (ng/mL) 19.9 ± 7.4 7.9 ± 5.1 < 0.001

IL-1β (pg/mL) 33 ± 8.9 3.6 ± 1 < 0.001

IL-2 (U/L) 0.4 ± 0.1 0.9 ± 0.1 < 0.01

IL-6 (pg/mL) 45.2 ± 11.8 13.1 ± 3.9 < 0.001

TNF-α (pg/mL) 9.2 ± 2.3 3.9 ± 1 < 0.001
E-selectine (ng/mL) 78 ± 38 59 ± 29 < 0.01
hsCRP (mg/L) 4.1 ± 4.8 0.9 ± 1.5 < 0.001

Results are mean ± SD; CRP, C-reactive protein; hs, high-sensitivity. 
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    Monocyte/macrophages express CatL implicated in atherogenesis 
and associated arterial remodeling. Lipoprotein modification and 
uptake by atherosclerotic lesion cells, mainly macrophages and 
VSMCs, are important pathological steps in the formation of 
atherosclerotic plaques[669,673,675,677,680-683]. CatL[680,684,685] and CatB[686, 

687] expression is enhanced in human coronary atherosclerotic lesions, 
carotid lesions, and in abdominal aortic aneurysms[676]. CatB, CatL 
and CatD, were found in macrophage-derived foam cells in lipid-rich 
plaque areas[688,689]. Macrophages, VSMCs, and endothelial cells can 
mobilize cathepsins also extracellularly, for example, the CatB, L, S, 
and K participated in plaque extracellular proteolysis[690]. 
    The role of cysteine cathepsin proteases in lipid uptake, storage, 
and efflux has been partly elucidated[675,677]. Cathepsins have the 
capability to degrade LDL and reduce cholesterol efflux from 
macrophages, aggravating foam cell formation[677]. Several cathepsins 
have been implicated in apoB-100 proteolytic modification, which 
enhances extracellular LDL particle aggregation, lipid droplet 
formation, and LDL retention to arterial proteoglycans[683]. After 
taking up the lipoproteins and modified lipoproteins, macrophages 
and VSMCs become foam cells filled with lipid droplets. These 
lipids or modified lipoproteins affect cysteine cathepsin cellular 
expression and localization. Oxidized lipids translocate CatL and 
CatB to the cytosol and nuclei, which is consistent with the findings 
that lysosomal CatL and CatB localize to the cytoplasm and nuclei of 
apoptotic macrophages/foam cells in human carotid atheroma[669,691]. 
    Macrophages exposed to oxLDL or 7β-hydroxycholesterol, 
expressed high levels of CatB and CatL because of lysosomal 
destabilization, in addition to forming foam cells[669]. The cathepsins 
translocated from lysosomes to cytosol or nuclei, caused foam cell 
apoptosis in the development and progression of atheroma[673]. In 
addition, lysosomal cell permeabilization due to exogenous reactive 
oxygen species may induce lysosomal leakage leading to release of 
cathepsins into the cytoplasm[675,692]. Cysteine cathepsins participated 
in the degradation of HDLs, thus reducing macrophage foam cell 
cholesterol efflux[675]. 
    CatB has been implicated in the pathogenesis of inflammatory 
diseases and in many aspects of atherosclerosis[677,693]. CatB, CatC, 
and CatL showed increased activity in the human aneurysm wall 
and thrombus[694-696], and CatB mRNA levels were increased in 
unstable regions of human plaque[687]. CatB cathepsin has been 
shown to activate IL-1β converting enzyme caspase-1, important 
for secretion of the mature IL-1β implicated in the pathogenesis of 
atherosclerosis[663,697].
    CatC was involved in immunological response because it activated 
granzymes A and B, neutrophil elastase, and CatG[698], and was 
found to be upregulated in CD8+ T cells in the thymus and spleen[699]. 
Interestingly, CatC can be activated by CatL or CatS, but not by 
autocatalytic processing[700]. 
    CatL is one of the most potent collagenases and elastases cleaving 
mature insoluble elastin[678]. This proatherogenic cathepsin is involved 
in death of macrophages, necrotic core formation and development 
of atherosclerotic plaque instability[701]. CatL is expressed in 
macrophages, VSMCs, and endothelial cells, and is located in the 
fibrous cap, tunica media, and macrophage-rich shoulder regions[676]. 
Macrophage apoptosis was found to be significantly correlated 
with expression of CatL in cell nuclei and membranes, and it was 
established that this cathepsin and TGF-β were overexpressed in cells 
subjected to mitochondrial metabolic stress[702]. 
    CatL stimulated autophagy and inhibited apoptosis of oxLDL-
induced endothelial cells[703]. Thus, the proatherogenic effect of 
CatL was partly neutralized by inducing autophagy and inhibiting 

apoptosis in early stages of atherosclerosis[703]. Wei et al[703] showed 
that oxLDL increased CatL protein expression and activation, 
inducing endothelial cell autophagy and apoptosis, and increasing 
endothelial cell permeability. The enhanced permeability of the 
endothelium is the first event in the cascade of bioprocesses leading 
to atherosclerotic formation, which leads to lipid infiltration and 
accumulation within the arterial wall[703]. Inhibiting apoptosis lowered 
the permeability of monolayers to LDL[704].
    All together, cysteine protease cathepsins, such as for example 
CatB, CatC, and CatL, have been shown to play a critical role in 
immunity and development of lesions in atherosclerosis.

T. gondii infection
Cysteine proteinases play a major role in invasion and intracellular 
survival of a number of pathogenic parasites, including T. gondii[705]. 
Cathepsin proteases act clasically as lysosomal hydrolases that 
digest endogenous and exogenous endocytosed polypeptides[706]. 
They function in microneme and rhoptry protein maturation, host 
cell invasion, replication, and nutrient acquisition[707,708]. Que et al[705] 
showed that the TgCatB, toxopain-1, was localized to rhoptries 
(secretory organelles required for parasite invasion into cells), and 
was critical for parasite invasion and rhoptry protein processing. 
Toxopain-1 was also found to be critical for infection in a chicken 
model of congenital toxoplasmosis[709].
    The parasite has a limited number of cystein proteinases, with one 
cathepsin B (TgCPB), one cathepsin L (TgCPL) and three cathepsins 
C (TgCPC1, 2, 3)[710]. It was demonstrated that T. gondii tachyzoites 
ingested host cytosolic proteins and digested them using CatL and 
other proteases within its endolysosomal system[708]. Both virulent 
type I and avirulent type II strain parasites ingested and digested host-
derived proteins, indicating that the pathway is not restricted only to 
highly virulent strains. Larson et al[711] established that TgCPL was 
found in multiple puncts throughout the cytoplasm of intracellular 
replicating parasites, and was associated with a discrete vesicular 
structure in the apical region of extracellular parasites. 
    Cathepsins are critical to the parasite growth and differentiation[707]. 
T. gondii cathepsins were required for peptide degradation in the 
parasitophorous vacuole (PV), as the degradation of the marker 
protein, E. coli β-lactamase, secreted into the PV of transgenic 
tachyzoites was completely inhibited by the CatC inhibitor[707]. 
Tables 26 and 27 summarized classes and specific cathepsin-like 
proteases of T. gondii proteases, their function and localization, and 
the parasite stage expressions[708,712]. TgCPC1 was found to be the 
most highly expressed cathepsin mRNA in tachyzoites, and three 
cathepsins, TgCPB, TgCPC1 and TgCPC2, were undetectable in in 
vivo bradyzoites[708]. 
    Infection of the host vascular endothelial cells by T. gondii 
tachyzoites may be an important source of additional cathepsins 
activity, which will be superimposing on the host cell normal/
pathologic cathepsin activities. It should be also added that, 
for example, CatB suppresses proliferation of peripheral 
blood mononuclear cells[718], and therefore participates in the 
immunosuppressive activity of the parasite proteases that can lead 
to impairment of the host immune defense. As a result, T. gondii 
infection may play a crucial role in triggering, maintaining and 
progression of atherosclerosis, especially because of the rapid 
proliferation of tachyzoites in endothelial cells[43], and global burden 
of congenital and acquired toxoplasmosis[25,30]. 
    Finally, it must be noted that there was a prevalence and pathology 
of amyloid in atherosclerotic arteries[719], and active forms of Cat B, 
CatL, and CatD, were found to be associated with amyloid deposits 



Table 26 Proteases characterized in T. gondii, their classes, function and localization (acc. to Li et al[712]; with own modification).
Protease class Specific protease Protease function and localization Refs

Cysteine

TgCPB/Toxopain-1 Invasion; rhoptry protein processing [705,709]

TgCPCs Growth and replication; cleavage of dipeptides from N-terminal in cytosol [707]

TgCPL Invasion; maturation of micronemal proteins; localized to the vacuolar compartment [713]

Metalloproteinase Toxolysin 4 Invasion/egress; localized to the micronemes [714]

Serine

TgSUB1 Invasion; maturation of rhoptry proteins; host cell attachment; localized to the micronemes [715]

TgSUB2 Invasion; maturation of rhoptry proteins; localized to the rhoptries [716]

TgROM2,4,5 Surface protein sheddase; localized to tachyzoite plasma membrane [717]

Table 27 Features of T. gondii cathepsin-like proteases (acc. to Dou and 
Carruthers[708]; with own modification).
Cathepsin 
protease

Mature molecular 
weight (kDa) Activity T. gondii 

stage expression
TgCPL 30 endopeptidase tachyzoite/bradyzoite

TgCPB 28 endo/
exopeptidase tachyzoite/bradyzoite

TgCPC1 35 exopeptidase tachyzoite

TgCPC2 44 exopeptidase tachyzoite

TgCPC3 32 exopeptidase sporozoite
TgCPC1 was found to be the most highly expressed cathepsin mRNA in 
tachyzoites, and three cathepsins, TgCPB, TgCPC1 and TgCPC2, were 
undetectable in in vivo bradyzoites[708]. 

2, IL-6, and the chemokines macrophage inhibitory protein (MIP)-1, 
and macrophage chemotactic protein/s (MCP)-1 and 2 from epithelial 
cells and macrophages, dendritic cells, T cells, and through apoptosis 
of T cells[731,732]. GCs not only down-regulated proinflammatory 
cytokines, they also generated a functionally active, antiinflammatory 
phenotype in human monocytes that suppressed inflammatory 
processes and, thus, induced resolution of inflammation[733].
    Many studies provided the experimental and clinical evidence that 
treatment with GCs accelerated and/or exacerbated development of 
atherosclerosis[194,734,735]. Accumulating evidence had demonstrated 
that foam cells were formed from macrophages in vitro at high 
concentrations (80-160 mg/mL) of oxLDL[736,737]. Moreover, several 
authors showed that dexamethasone (DXM, 1mM) (a synthetic GC 
receptor agonist) could promote the macrophage-derived foam 
cell formation (a hallmark of early atherosclerotic lesions[738,739]) at 
lower concentration of ox-LDL in vitro, and that the drug increased 
the formation of CEs in macrophages and human SMCs in a dose-
dependent manner[201,740]. The finding that DXM could promote 
the foam cell formation at lower ox-LDL concentration might be 
partially caused by the up-regulation of ACAT1 gene expression 
at the transcriptional level and the enhancement of cholesterol 
esterification[194]. 

T. gondii infection
Wang et al[741] showed that the growth rate of T. gondii RH strain 
tachyzoites was significantly increased in the peritoneal macrophages 
of rats treated with GCs in vivo compared with control cells (Table 
28). They also demonstrated a significant inhibition of NO production 
in the macrophages collected from the rats receiving treatment with 
GCs compared with the control animals (Table 29). In addition, 
treatment with GCs inhibited the expression of iNOS mRNA in rat 
peritoneal macrophages[741]. [Nb. Costa et al[742] showed that T. gondii 
infection slightly upregulated glucocorticoid-induced TNF receptor 
expression in Treg cells and B cells, but the most robust increment 
in expression was observed in macrophages and dendritic cells] 
These findings are consistent with the results obtained by Nishikawa 
et al[743] that T. gondii decreased NO production in the peritoneal 
macrophages, and with the suggestion that the parasite could partially 
decrease NO production in the infected host cells and therefore 
escape the immune defense reaction in the host[744]. 
    Jones et al[745] also found that DXM (the GC receptor ligand) 
significantly reduced LPS-induced macrophages production of NO. It 
was reported that DXM can inhibit iNOS expression in LPS-treated 
murine macrophages by destabilizing the mRNA transcript[746]. The 
GC receptor has also been demonstrated to interact with NF-κB, 
which has a role in induction of iNOS, therefore providing another 
possible means of inhibiting NO production[747]. In addition, LPS-
induced IL-12 generation also could be downregulated by the GC. 
Masur et al[748] observed that even therapeutic concentrations of 
hydrocortisone rendered normal macrophages unresponsive to IFN-γ 

in Alzheimer’s disease[720-722]. These findings are compatible with 
our earlier suggestions that latent chronic T. gondii infection may 
be at least in part responsible for the generation of amyloid plaques 
characteristic for the brains of patients with Alzheimer’s disease and 
Down’s syndrome[222,223].
    In summary, infection of host vascular endothelial cells by T. 
gondii tachyzoites may become an additional source of cysteine 
cathepsin activities that are superimposing on the activity of similar 
enzymes physiopathologically present in the host cells, because the 
parasite’s tachyzoites, bradyzoites, and sporozoites express several 
members of these proteases. 

TREATMENT WITH GLUCOCORTICOIDS 
(GCs) ACCELERATED AND/OR EXACER-
BATED DEVELOPMENT OF ATHEROSCLE-
ROSIS AT LEAST IN PART BY ENHANCING 
PROLIFERATION OF T. gondii TACHYZOITES 
IN MACROPHAGES AND FOAM CELL FOR-
MATION
Atherosclerosis
Prolonged chronic stress associated with infection and inflammation 
can upregulate the levels of GCs and catecholamines leading to 
various diseases[723], and specifically cardiovascular diseases have 
been associated with elevated levels of IL-1β, TNF-α, IL-6, and 
IFN-γ[724]. GCs have been reported to interfere with a variety of both 
intra- and extracellular activities of mononuclear phagocytes, and GC 
receptors have been identified in monocytes and macrophages[725]. 
Hydrocortisone and prednisone diminished human monocyte 
chemotaxis[726], bactericidal capacity[727,728], receptor activity for 
IgG and C3 complement[727], and specifically inhibited macrophage 
elastase, collagenase, and PAI secretion[729]. Moreover, GCs inhibited 
the expression and action of most cytokines[730]. These drugs exerted 
an antiinflammatory effect by down regulating the production and 
secretion of proinflammatory cytokines such as TNF-α, IL-1β, IL-
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and prevented the induction of the activated mononuclear phagocyte 
the capacity to respond to T. gondii ingestion with an enhanced 
oxidative respiratory burst, and the ability to inhibit intracellular 
parasite replication. 
    GCs are widely used for the treatment of autoimmune diseases 
and after bone marrow transplantation, sometimes resulting in 
development of acute toxoplasmosis in these patients[741,749,750]. 
Approximately one-third of transplant recipients experienced 
neuropsychiatric and other complications including encephalopathy, 
stroke, seizures, loss of vision, cardiovascular events, and de novo 
lymphoproliferative disorders (lymphoma, glioma)[751-754]. Organ 
transplant recipients had a three- to fourfold higher incidence 
of malignant diseases development compared with the general 
population[752], and many of CNS lymphomas were associated with 
prior Ebstein Barr virus infections[755]. Neurologic complications 
of liver transplantation were more common than that of other solid 
organ transplants (13-47%)[753]. Recurrent ocular toxoplasmosis 
has also been reported in patients receiving systemic corticosteroid 
therapy (dose range, 0.27-1.23 mg/kg/day)[756]. The study of 
Ahlbom et al[757] suggested that prenatal exposure to excess of GCs 
increased the susceptibility of cerebellar granule cells to oxidative 
stress-induced cell death, and elevated maternal cortisol levels 
during pregnancy have been associated with reduced childhood 
IQ[758]. It must be emphasized that in mice brains infected with T. 
gondii electron microscopy revealed that cortisone increased the 
amount of tachyzoites, cysts and cystozoites, as the rupture of cysts 
released a highly resistant antigen of cystozoite type[759]. All these 
CNS abnormalities, clinical complications, and developmental 
disturbances observed during therapeutic use of GCs could be due to 
the increased proliferation of T. gondii in the host cells induced by 
the increased levels of GCs and other immunosuppressive drugs that 
markedly affected physiologic balance between profusely generated 
type TH1 and type TH2 cytokines[760, 761]. 
    Taken together, several authors showed that DXM could promote 
the macrophage-derived foam cell formation at lower concentration 
of ox-LDL in vitro, and that the drug increased the formation of CEs 
in macrophages and human SMCs in a dose-dependent manner. 
These changes might be partially caused by the up-regulation of 
ACAT1 gene expression and thus the enhancement of cholesterol 
esterification. However, it should be noted that the growth rate of 
RH strain T. gondii tachyzoites was significantly increased in the 
peritoneal macrophages of rats treated with GCs in vivo compared 
with control cells. A significant inhibition of NO production in the 
macrophages collected from the rats receiving treatment with GCs 
was also observed. Moreover, GCs inhibited the expression and 
action of most cytokines involved in inflammation. Thus, all these 
molecular processes may at least in part explain an important role of 
GCs in development of atherosclerosis.

BENEFICIAL EFFECTS OF VITAMIN D IN 
BOTH ATHEROSCLEROSIS AND T. gondii 
INFECTION. VITAMIN D MARKEDLY DE-
CREASED PROLIFERATION OF T. gondii 
TACHYZOITES IN MACROPHAGES AND 
REDUCED TISSUE PATHOLOGY IN ANIMALS 
INFECTED WITH THE PARASITE
Atherosclerosis
Vitamin D regulates wide range of physiological and pathological 

Table 28 Proliferation of T. gondii tachyzoites in peritoneal macrophages 
of rats treated with glucocorticoids (GCs) (acc. to Wang et al[21]; with own 
modification).

GCs
Number of T. gondii per 100 cells

1 hr 12 hrs 24 hrs

DXM 35 ± 3 55 ± 8 a 176 ± 15 a

HSS 39 ± 5 81 ± 12 a 227 ± 14 a

MP 37 ± 6 85 ± 14 a 242 ± 16 a

Control 39 ± 5 23 ± 4 16 ± 4
Results are expressed as means ± SD, number of rats =3. a p < 0.01 vs 
control. Rats were injected intramuscularly with a dose of GCs for 7 
days, macrophages were harvested and cultured for 12 hrs and then 
incubated with T. gondii at the ratio 1:1 (parasites/macrophages = 1:1). 
DXM, dexamethasone; HSS, hydrocortisone sodium succinate; MP, 
methylprednisone. 

processes characteristic for atherosclerosis, including vascular cell 
growth, migration, and differentiation, immune response modulation, 
cytokine expression, and inflammatory and fibrotic pathways[762]. 
Vitamin D deficiency is affecting more than one billion people 
to approximately 50% of population worldwide[762-764]. Shortage 
of vitamin D induced atherosclerosis and high blood pressure in 
mice[765]. Epidemiological and clinical evidence linked vitamin 
D deficiency to cardiovascular diseases in humans[766], including 
carotid atherosclerosis[762,767,768]. Vitamin D receptor (VDR) is present 
in all cells implicated with atherosclerosis, such as endothelial 
cells, vascular smooth muscle cells, and immune cells[762]. It was 
demonstrated that vitamin D inhibited foam cell formation by 
suppressing oxidized and acetylated LDL-derived cholesterol uptake 
in macrophages from type 2 diabetes patients[769], and decreased 
atherosclerosis by regulating T lymphocyte functions[770]. Vitamin 
D exerted also protective effects on endothelial cell dysfunction, 
inflammatory processes that precede atherosclerosis[771], regulated 
the expression of profibrotic and antifibrotic factors[772], and inhibited 
formation of atherosclerosis calcification[773,774].
    Vitamin D was found to modulate both the innate and acquired 
immune systems[775-778]. Macrophages, endothelial cells, and smooth 
muscle cells, among others, are able to transform 25(OH)3D3 to 
its active hormonal form, 1,25-dihydroxyvitamin D (1,25(OH)2 

D3). The active metabolite primarily mediated its effects through 
the intracellular VDR[779], which is expressed in most cell types 
of the immune system, in particular in antigen presenting cells 
such as monocytes, macrophages, and in dendritic cells[780], B 
cells, as well as in CD4+ and CD8+ T cells[775,778]. Vitamin D favors 
a mononuclear cell phenotype, increasing VDR expression on 
monocytes and macrophages[779]. Activation of VDR altered 
transcription, proliferation, and differentiation of immune cells[779], 
and modulated immune responses both indirectly, by reducing the 
activation of proinflammatory T cells by antigen-presenting cells[781], 
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Table 29 Nitrite production by peritoneal macrophages from rats treated 
with glucocorticoids (GCs) (acc. to Wang et al[21]; with own modification).

GCs
Nitrite production (µM)

12 hrs 24 hrs 36 hrs
DXM 9.78 ± 0.37 a 14.31 ± 1.22 a 17.99 ± 1.08 a

HSS 8.19 ± 0.32 a 11.05 ± 0.74 a 13.51 ± 1.45 a

MP 7.86 ± 0.46 a 10.65 ± 0.98 a 12.90 ± 0.99 a

Control 14.44 ± 1.04 25.41 ± 1.44 30.85 ± 1.62
Results are expressed as means ± SD, number of rats = 3. a p < 0.01 vs. 
control. DXM, dexamethasone; HSS, hydrocortisone sodium succinate; 
MP, methylprednisone. Peritoneal macrophages isolated from rats were 
treated with GCs for 7 days, and then incubated for 12, 24, and 36 hrs. 
NO2

- production in the supernatant of the cell culture medium was 
measured by the Griess reaction.



and directly, by inhibiting T and B cells proliferation[775,782]. Active 
vitamin D and corticosteroids exerted additive immunosuppressive 
effects on TH1 responses[783]. All these actions finally result in a TH2 
type-driven antiinflammatory state in the host[784,785]. Table 30 listed 
multiple actions of vitamin D in the immune system. Several of 
the above-presented actions of vitamin D on immune system may 
have beneficial effects on clinical course and outcome of patients 
with atherosclerosis. It should be added that also vitamin A exerted 
favorable effects in patients with atherosclerosis because it decreased 
cytotoxicity of oxidized LDL and improved peripheral blood 
mononuclear cells viability[801]. 

T. gondii infection
An infectious pathogenesis put forward that intracellular parasite 
infection disrupt the vitamin D regulated immune system resulting in 
persistent infection and chronic inflammation. Studies showed that 
1,25(OH)2D3 directly increased antimicrobial peptide gene expression 
which could enhance host defense against infection[802,803]. Vitamin D 
was also required for IFN-γ-mediated antimicrobial activity of human 
macrophages[804]. 
    Vitamin D facilitate neutrophil motility and fagocytic function[805]. 
Circulating vitamin D levels have a direct influence on macrophages, 
increase their “oxidative burst” potential, such as for example 
maturation and generation of cytokines, hydrogen peroxide, and 
acid phosphatase[787,806]. Vitamin 1,25-D3 inhibited proliferation of 
TH1 cells through impairing production of IL-2, TNF-α, and IFN, 
as well as TH17 cells, and thus skewing cytokine production toward 
a TH2 phenotype[787,807]. Vitamin D may thus improve outcomes by 
reducing both local and systemic inflammatory actions as a result of 
modulating cytokine responses and decreasing TLR activation[808].
    Finally, it must emphasized that vitamin D significantly decreased 
in vitro proliferation of T. gondii tachyzoites in macrophages 
(Table 31), increased NO generation in these cells (Table 32)
[809], and diminished various tissue pathology in animals infected 
with the parasite (Table 33), possibly by acting on tachyzoites in 
parasitophorous vacuole[810]. Of note, vitamin D may however also be 
linked to the increased susceptibility and mortality of mice infected 
with the pathogen, probably because of its downregulation of the TH1 
type cytokine response[811].
    In summary, experimental and clinical data provide vast evidence 

that vitamin D have important beneficial impact on immunity, as well 
as on T. gondii infection, and therefore it should find a solid place in 
various treatment regimens directed against both atherosclerosis and 
the pathogen. 

CONCLUDING REMARKS 
Intracellular parasite T. gondii is widely disseminated in animals and 
infects approximately 30-50% of human population worldwide. The 
pathogen attacks almost all nucleated cells, and vascular endothelial 
cells have increased susceptibility to infection with T. gondii causing 
oxidative stress and endothelial dysfunction. Persistent inflammation 
associated with the increased production of proinflammatory 
cytokines and cysteine cathepsins during latent chronic 
toxoplasmosis cause enhanced generation of foam cells, disturbances 
of blood coagulation, and development of atherosclerotic lesions. 
In these bioprocesses, T. gondii tachyzoites become an additional 
source of TgACAT1 and TgACAT2 and cathepsin proteases that 
are superimposing on the respective enzymes produced in the host 
vascular endothelial cells, thereby enhancing their final activities. 
These findings may be supported by at least six facts: (a) early stages 
of atherosclerosis began already in early embryonic life probably 
caused by congenital toxoplasmosis acquired in the first trimester 
of gestation as a result of parasite transmission from mother to 
fetus[110]; (b) the parasite penetrated nucleated erythroblasts and 
macroreticulocytes from fetal mouse liver and the circulating 
erythrocytes of fetal mice[414], and multiplied in the immature 
cells[812]; (c) the accelerated atherosclerotic development was due 
to the increased levels of cholesterol and LDL reported in T. gondii 
infected humans[16] and animals[813]; (d) the highest amongst analyzed 
regression coefficients (B = 12.49, p = 0.026, Eta2 = 0.058) between 
the prevalence of toxoplasmosis and cardiovascular (cerebrovascular 
and ischemic heart) diseases in a set of 88 countries[30]; (e) there 
is a frequent comorbidity of severe carotid atherosclerosis and 
mood disorders (p < 0.0001)[814] as well as a significant relationship 
between chronic T. gondii infection and mood disturbances[815]; 
and (f) pravastatin, simvastatin and other statins (drugs with 
hypocholesterolemic and antiatherosclerotic activities) inhibited the 
adhesion, replication and proliferation of T. gondii[816-819]; propranolol, 
a β-adrenoreceptor blocking agent, also exerted antitoxoplasmic 

Table 30 Effects of 1,25-dihydroxyvitamin D3 on innate immune system (acc. to Pelajo et al[786]; Youssef et al[787]; with own modification).

Vitamin D actions in the immune system Refs
Decreases the antigen-presenting activity of macrophages to lymphocytes; acts on phenotype and function of antigen presenting 
cells (monocytes, macrophages, dendritic cells) via oxidative burst, production of acid phosphatase and hydrogen peroxide, and 
maturation of cytokines; acts on neutrophils mobility and phagocytic function; upregulates antimicrobial peptides (cathelicidins, 
beta-2/beta-3 defensins) in neutrophils, NK cells, monocytes, macrophages, and lymphocytes

[787-789]

Inhibits the maturation of monocytes into dendritic cells [790, 791]

Induces the activation of T reg and NK T cells [792, 793]

Inhibits TH1 type cytokine response [783, 790, 791, 793]

Decreases IL-2, IFN-γ, and CD4 and CD8 DNA  synthesis [776, 787-791] 

Stimulates the TH2 type cytokine dominance [783,790, 791, 793]

Increases IL-4, IL-5 and IL-10 synthesis [777, 789, 790]

Inhibits the synthesis of IL-12, IL-1, IL-6 and TNF-α [776, 788, 794, 795]

Inhibits B cell proliferation, plasma cell differentiation, and antibody/immunoglobulin production                           [789-791, 796, 797] 

Triggers B cell apoptosis [787]

Increases apoptosis induced by dendritic cells and T lymphocytes – tolerance [797]

Induces autophagy in human monocytes/macrophages via cathelicidin                                                                   [777, 780]

Induces NOS in a human monocyte/macrophage cell line a [798]
NOS, nitric oxide synthase. a NO is an effector molecule of parasite killing[799]. Interestingly, 1α25(OH)2D3 suppressed growth and triggered the destruction 
and clearance of another intracellular pathogen Mycobacterium tuberculosis by activating autophagy in infected human monocytes/macrophages[800]. 
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Table 31 Effect of vitamin D3 and IFN-γ on proliferation of T. gondii (RH strain) tachyzoites per infected peritoneal macrophage of BALB/c mice after 
incubation for 96 hrs in RPMI1640 cells culture (acc. to Ghaffarifar et al[809]; with own modification).
Experiment No. Controls Solvent a Vit D3 (1000 IU) IFN-γ  (100 IU) Vit D3 (1000 IU) plus IFN-γ (100 IU)

1 3.01 ± 0.14 2.93 ± 0.16 2.49 ± 0.19 b 2.6 ± 0.2 b 2.37 ± 0.19 b

2 3.15 ± 0.12 3.03 ± 0.16 2.74 ± 0.16 2.5 ± 0.15 b 2.58 ± 0.13 b

3 3.05 ± 0.15 3.04 ± 0.14 2.82 ± 0.17 2.57 ± 0.16 b 2.69 ± 0.2 b

4 3.16 ± 0.14 3.0 ± 0.14 2.39 ± 0.19 b 2.59 ± 0.2 b 2.03 ± 0.19 b

Numbers of tachyzoites are given as a mean ± SD. a Ethanol 95. b Statistically significant differences compared with controls (p ≤ 0.05). 

Table 32 Effect of vitamin D3 and IFN-γ on NO production by peritoneal macrophages of BALB/c mice infected with T. gondii (RH strain) after incubation 
for 24 hrs in RPMI1640 cells culture (acc. to Ghaffarifar et al[809]; with own modification).
Experiment No. Controls Solvent a Vit D3 (1000 IU) IFN-γ  (100 IU) Vit D3 (1000 IU) plus IFN-γ (100 IU)

1 109 ± 8.02 108.2 ± 12.45 165 ± 11.30b 146 ± 7.22 b 187.8 ± 9.82 b

2 108 ± 9.46 108.9 ± 6.93 121.2 ± 6.68 139.5 ± 5.76 b 136.2 ± 10.21 b

3 109.6 ± 7.35 108.2 ± 4.96 139 ± 7.01 b 146 ± 4.93 b 146.9 ± 9.62 b

4 109 ± 7.03 108.6 ± 4.26 166 ± 7.01 b 146.2 ± 5.60 b 191.5 ± 9.62 b

Values are given as mean ± SD. a Ethanol 95. b Statistically significant results compared with controls (p ≤ 0.05). NO production was estimated as a nitrite 
release from infected macrophages (µM).

Table 33 Effect of pretreatment with 1,25(OH)2D3 (0.5 mg/kg/2 days) on 
tissue pathology caused by T. gondii avirulent ME49 strain infection with 
20 cysts administered intraperitoneally in BALB/c mice (acc. to Rajapakse 
et al[810]; with own modification).

Tissue Pathology No 
treatment

Treatment 
with Vit D3

Lung
Alveolar macrophages 1 0

Inflammatory foci 2 1

Liver
Inflammatory foci 3 2

Hemorrhage 2 0
Mitosis 1 0

Small intestine
Inflammatory infiltrates 1 0
Necrotic mucosal cells 2 1

Brain Presence of the parasite 2 0
Spleen Granulocytes 2 1
Histopathologic examination of the tissues was performed 7 days post 
inoculation. Numbers are based on severity of the lesions (0, no lesion, 
1, mild, 2, slight, 3, moderate changes) and the total was divided the 
number of animals in the group. Also, in vitro studies with incubated 
intestinal epithelial cells showed a significant dose-dependent inhibition 
of intracellular T. gondii tachyzoites (RH strain, type I) proliferation at 10-7 
M of 1,25(OH)2D3 concentration. 

effects[820,821] and had both antiatherosclerotic[822] and atherogenic[823] 
properties. Thus, it seems that latent chronic toxoplasmosis 
play an essential but so far neglected role in the pathogenesis of 
atherosclerosis. 
    Finally, one may ask why until now there was no suggestion that 
this pathogen might be so crucial and successful environmental 
factor responsible for triggering and development of atherosclerosis 
on a global scale? Probably, the answer to this question refers to 
the facts that physicians have a very limited knowledge about this 
widely disseminated pathogen in humans, animals and birds, and 
there is a general opinion that such infection is usually harmless in 
immunocompetent individuals[28,29]. Moreover, there is no sufficiently 
specific and sensitive laboratory method available so far for diagnosis 
of infection with the parasite, and a plethora of T. gondii antigens 
detected in human plasma due to various parasite strains that infect 
host, and different stage-specific antigens of the pathogen[824]. T. 
gondii antigens recognized by IgG antibodies also differ between 
immunocompetent hosts with and without active proliferation of 
tachyzoites during chronic infection[825]. Recently however, we 
proposed and gave the reasons[495] for a need to use a very specific 
method proposed long time ago by Sternberger et al[826] and modified 
by Conley and Jenkins[827].
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