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Abbreviations
α-MHC: the alpha-myosin heavy chain gene;
CV: cardiovascular;
DNA: deoxyribonucleic acid;
ECREM: Epigenetic Code REplication Machinery;
HFrEF: heart failure with reduced ejection fraction;
HFpEF: heart failure with preserved ejection fraction;
miRNA: micro ribonucleic acid;
MHC: myosin heavy chain;
SPR-Ca2+ ATPase: sarcoplasmic reticulum Ca2+ ATPase genes.

INTRODUCTION
Chronic heart failure (HF) has remained to be a serious clinical and 
public problem[1]; despite the prevalence of chronic HF especially HF 
with reduced left ventricular ejection fraction (HFrEF) seems to have 
a tendency to decrease within the last decade in the development 
countries[2]. Contrary, a frequency of newly HF with preserved left 
ventricular ejection fraction (HFpEF) is on the rise and HFpEF 
is considered more common than HFrEF predominantly in the 
older population and among subjects with hypertension, diabetes, 
respiratory diseases[3]. Currently, more than 50% of patients with 
the clinical syndrome of HF might have a preserved left ventricular 
ejection fraction[4]. Nevertheless, recent clinical studies have shown 
a sufficient distinguish between presentation of both HF phenotypes 
(HFrEF or HFpEF) in individuals at risk for HF development in a 
primary care setting[5,6]. Although HFpEF patients might have lower 
levels of predictive biomarkers[7], the clinical outcomes in HFpEF 
individuals, i.e. cardiovascular (CV) death, HF-related death, sudden 
death and readmission, are not better than in patients with HFrEF[8,9].
    Current clinical HF guidelines are recommended to use early 
identification and treatment of the underlying cause of cardiac 
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ABSTRACT
Chronic heart failure (HF) is a leading clinical and public problem 
affected higher risk of morbidity and mortality in different 
population. HF appears to be in both phenotypic forms: HF with 
reduced left ventricular ejection fraction (HFrEF) and HF with 
preserved left ventricular ejection fraction (HFpEF). Although both 
HF phenotypes are distinguished in clinical features, co-morbidity 
status, prediction score, and treatment, the clinical outcomes 
in patients with HFrEF and HFpEF are similar. In this context 
investigation of various molecular and cellular mechanisms leading 
to development and progression of both HF phenotypes are very 
important. There is emerging evidence regarding that the epigenetic 
regulation may have a clue in the pathogenesis of HF. The review is 
represented current available evidence regarding an implication of 
epigenetic modifications in development of different HF phenotypes. 
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dysfunction to prevent HF manifestation[10,11], whereas no evidence 
that HF phenotypes’ development is preventable with specific 
medical care[12]. Taken together, all these data clarify the importance 
of stratification of individuals at risk of HFrEF or HFpEF 
development and progression[13,14]. 
    Various molecular and cellular mechanisms are involved in the 
development and progression of both HF phenotypes. There is 
emerging evidence regarding that the epigenetic regulation may take 
an important part in the pathogenesis of HF playing a pivotal role 
in phenotypic response of failing heart and prognosis[15,16]. There is 
experimental and clinical evidence that advance of HF might associate 
with autonomic imbalance with increased sympathetic nerve activity 
and a withdrawal of parasympathetic activity, with the target of 
involvement being the heart which may be of epigenetic origin[16-18]. 
The increase in angiotensin II signaling enhances sympathetic nerve 
activity through actions on both central and peripheral sites causing 
increased contractility of the heart, as an adaptation, during chronic 
HF[17]. Angiotensin II signaling is enhanced in different brain sites 
such as the paraventricular nucleus, rostral ventrolateral medulla and 
area postrema via neuregulin-brain natriuretic peptide release from 
these sites which influences the function of cardiomyocytes and the 
heart[18]. It is suggested that blocking angiotensin II type 1 receptors 
decreases sympathetic nerve activity and cardiac sympathetic afferent 
reflex when therapy is administered to the PVN which may be due to 
epigenetic modulation[19].
    Epigenetic modifications affected DNA methylation, ATP-
dependent chromatin remodeling, histone modifications, and 
microRNA-related mechanisms are considered a sufficient factor 
contributing to adverse cardiac remodeling and preceding cardiac 
dysfunction[20]. Probably, in the future epigenetic modifications of 
cardiomyocytes would be a target for personalized management and 
much more effective tools for prevention of HF development[21]. 
The review is summarized the knowledge regarding implication of 
epigenetic modifications in development of different HF phenotypes.

DEFINITION OF EPIGENETICS
A classical definition of epigenetics was proposed by Conrad 
Waddington in the 1950s, which believed that organism’ phenotype 
arises from its genotype through so called “programmed epigenetic” 
event. Epigenetics was considered neither as the study of changes 
in states of any gene activity or inherited activity states only[22]. In 
some definitions, only those activity states that are inherited across 
cell division were defined[23]. In the Roadmap Epigenomics Project 
epigenetics is used as an emerging frontier of science that involves 
the study of changes in the regulation of gene activity and expression 
that are not dependent on gene sequence[24]. Accordingly Banbury 
Conference Center and Cold Spring Harbor Laboratory chromatin-
based epigenetic trait has defined as a stably heritable phenotype 
resulting from changes in a chromosome without alterations in the 
DNA sequence[25]. By now, it has been suggested that the basis of 
epigenetics is non-genetic cellular memory that expressed or non-
expressed in specific developmental and environmental situations[26].
    Berger SL et al[27] have suggested to use at least three categories 
of signals that modulate epigenetic state: “Epigenator”, “Epigenetic 
Initiator” and “Epigenetic Maintainer”. Authors suggested that 
signal that is proposed to name the “Epigenator” might be atribute 
of the environment and it could be a trigger an intracellular pathway. 
The signal that is called “Epigenetic Initiator”, corresponds to 
“Epigenator” signal and is essential for define the precise arrangement 
of the epigenetic chromatin environment. Finally, “Epigenetic 
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Maintainer” signal is deemed as the chromatin environment 
contributing to the first and subsequent generations. The role of 
different classes of potential signals affected epigenetic modifications 
of chromatin is not well defined and is widely discussed. 
   In this context, discrete chemical modifications of DNA and 
primarily histones might regulate expression or repression of target 
genes and can be transmitted to the descent via epigenetic memory[28]. 
It has suggested that the macro-molecular complex, called “Epigenetic 
Code REplication Machinery” (ECREM), as being involved in 
the inheritance of the epigenetic code. The main the members of 
ECREM could be enzymes involved in epigenetic modification of 
chromatin, i.e. DNA methyltransferases, histone deacetylases, histone 
acetyltransferases, and sirtuins. Moreover, deregulated ECREM is 
considered a clue of cell reprogramming[27,28]. However, epigenetic 
events in various cells provide closely control of gene expression 
and genomic regulation through multiple generations leading to 
phenotypes’ variability.

EPIGENETICS IN FAILING HEART 
Epigenetics are referred a modification of the non-DNA sequences 
related heritable changes in gene expression of target cells that is 
currently recognized as a key to understanding of pathogenesis 
CV diseases[29]. Epigenetic modifications are based on different 
molecular mechanisms, which affect DNA methylation and 
deactylation, ATP-dependent chromatin remodeling, histone 
modifications, and microRNA regulation (Figure 1). All these 
processes coordinate modulating of chromatin structure and thereby 
might effect of modalities and expression of target genes[30]. It has 
been found the proliferative capability of human cardiac cells is 
under tight epigenetic regulation that mediates a dynamic adaptation 
of the structure and functionality of wide spectrum of cells, i.e. 
cardiomyocytes, fibroblasts, endothelial cells, progenitor cells, for 
environmental challenges and to respond to biochemical stress. It 
is suggested that dysregulation in epigenetic signals, messengers 
and molecular targets is a clue for pathological remodeling of heart 
and vessels, progenitor cell dysfunction, worsening of endogenous 
repair system, metabolic memory manifestation[31]. It is now 
becoming evident that cumulative effect of these factors may 
culminate in HF, cardiac hypertrophy, arrhythmia, dyslipidemia, 
atherosclerosis/atherothrombosis, and associates with increased 

Figure 1 The principal scheme regarding epigenetic regulations in heart 
failure development. Abbreviations: α-MHC: the alpha-myosin heavy 
chain gene; SPR-Ca2+ATPase: sarcoplasmic reticulum Ca2+ ATPase genes.
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Mechanisms of epigenetic modifications

Altered DNA methylation

ATP-dependent chromatin remodeling

Histone acetylation 

Altered miRNA  signature

Table 1 The role of epigenetic modifications in HF development and progression.
Phenotypic response
Left ventricular dilatation
Cardiac hypertrophy
Reduced contractility function
Reduced contractility function?
Cardiac hypertrophy
Endothelial dysfunction
Left ventricular dilatation
Arrhythmognesis
Cardiac hypertrophy
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risk of CV death[32-37]. Whether interactions between features of 
transcriptomics, proteomics and metabolomics are specifically 
for HFrEF and HFpEF remains still not clear. Moreover, different 
mechanisms of epigenetic modifications may relate to various HF-
depended settings, i.e. cardiac hypertrophy, myocardial infarction, 
atrial fibrillation, sudden death, and play controversial role (Table 1). 
However, the innate mechanisms regarding causal pathway to HF 
phenotypes’ development are nor fully understood and require more 
investigations[38].

DNA methylation
DNA methylation is the most common epigenetic chromatin 
modification[39]. Movassagh M et al[40] suggested that there is distinct 
global pattern of the epigenome leading to regulate the expression of 
underlying genes. Authors investigated genome-wide maps of DNA 
methylation and histone-3 lysine-36 trimethylation enrichment for 
cardiomyopathic and normal human hearts. It has found a sufficient 
difference in DNA methylation in promoters of up-regulated genes, 
but not down-regulated genes in end-stage cardiomyopathy [40]. 
Furthermore, the process of DNA methylation was under regulation 
through several genetic pathways that are modulating by platelet/
endothelial cell adhesion molecule 1, hypoxia-inducible factor- 
1alpha, angiomotin-like 2, and Rho GTPase activating protein 
24[40,41]. Authors suggested that epigenetic modifications identified in 
failing heart might affect cardiac function directly through regulation 
of structure protein synthesis and, however, indirectly via increased 
activity of cardiac fibroblasts due to prolonged hypoxia contributing 
to the pro-fibrotic nature of the ischemic milieu.
    Contrary, satellite repeat element transcripts, a form of non-
coding RNA that is heavily methylated in post-natal tissue, have 
putative functions in maintaining genomic stability and chromosomal 
integrity[42]. Moreover, the hypomethylation of satellite elements 
exhibited closely association with significant up-regulation of satellite 
transcripts[42]. Finally, there is evidence that methylation-regulated, 
alternative transcripts might express in a tissue- and cell type-
specific manner and they may regulate intragenic promoter activity 
via enhancing transcription elongation efficiency[39,43]. Thus, DNA 
methylations may enhance transcription of the underlying satellite 
repeat element transcripts.
    Xiao D et al[44] reported that increased DNA methylation might 
have a causative role in programming of heart hypertrophy and 
reduced global cardiac contractility function. Moreover, impaired 
contractility of the left ventricle has associated with an increase in 
the susceptibility to ischemic injury[44]. Contrary, Haas J et al[45] did 
not find evidence regarding participation of DNA methylation in 
genes suspected to HF development. However, DNA methylation 
has exhibited a causality role in diabetes-induced HFpEF[46]. 
Unfortunately, the data regarding the role of DNA methylation in 
development of both phenotypes of HF beyond inhered forms in 
are very limited. More investigations are required to understand 

the underlying mechanisms linked DNA methylation and HF 
presentation.

ATP-dependent enzymes in chromatin remodeling
The ATP-dependent chromatin remodeling complexes are not able 
to directly modify DNA or histones, whereas they may use energy of 
ATP hydrolysis in processes regarding destabilize, eject or restructure 
of nucleosomes, which is functional unit of chromatin[47]. Because 
nucleosomes actively participate in transcription, chromosome 
segregation, DNA replication, and DNA repair, the chromosomal 
DNA packaging by nucleosomes is crucial for the regulation 
of these processes[48]. The dynamic access to DNA packaging 
performs by specialized chromatin remodeling complexes[49]. 
There are four different families of ATP-dependent chromatin 
remodeling complexes: switching defective/sucrose non-fermenting 
complexes (SWI/SNF), imitation switch complexes, chromodomain-
helicase-DNA-binding complexes, and inositol-requiring eighty 
complexes[50,51]. All members of each family exhibit distinct unique 
domains that are served to histone-DNA contacts for DNA movement 
and chromatin restructuring[52]. The covalently modified histones 
are recognized by these domains of ATP-dependent chromatin 
remodelers and thereby regulate an expression of distinct gene 
programs tailored to specificity and biological functions of each 
family of chromatin remodeling complexes[53]. 

Histone modifications
Histone modification represents a dynamic process affected 
histone proteins (H2A, H2B, H3, and H4) that are composed in 
the nucleosomes and mediated by several enzymes[54]. As a result, 
distinct histone amino-terminal modifications appear to be able to 
induce synergistic or antagonistic interaction affinities for chromatin-
associated proteins, which in turn dictate dynamic transitions between 
transcriptionally active or transcriptionally silent chromatin states[55]. 
By now more than 150 post-translation modifications of histones have 
been reported, including methylations, acetylations, sumoylation, 
ubiquitinations, ADP-ribosylation, proline isomerization, and 
phosphorylations[56]. Appearance of conformational changes in 
the chromatin resulting in alteration due to histone modifications 
regulates gene expression depending on depending on whether DNA 
has been became accessible (defined as euchromatin) or inaccessible 
(called as heterochromatin) for further transcription process[57].
    Recent studies have shown that histone modification 
predominantly methylation is closely regulates inflammatory and 
metabolic disorders, as well as links CV disease and vascular 
homeostasis[58-60]. There is evidence that altered redox signaling might 
mediate trimethylation of histones H3K4 and H3K9 and thereby 
links an oxidative stress pathway with biochemical mechanisms 
underlying HFrEF development[61]. Probably, aging might affect on 
development neither HFpEF nor HFrEF through so-called "epigenetic 
drift" via markedly regulation of DNA and histone methylation[62]. 
However, further investigations are needed to explain in details the 
role of histone modification in impairment of cardiac structure and 
functionality. 

MICRORNA-DEPENDING MECHANISMS
MicroRNAs (miRNAs) are small non-coding RNAs that exert their 
function by both transcript degradation and translational inhibition, 
resulting in changes in target gene and protein expression[63]. It 
has been suggested that reactivation of a fetal microRNA program 
substantially contributes to alterations of gene expression in the failing 
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human heart. Indeed, recent studies have shown that the increased 
expression of miRNA-1, miRNA-21, miRNA-29b, miRNA-129, 
miRNA-133, miRNA-208, miRNA-210, miRNA-211, miRNA-212, 
and miRNA-423 and miRNA-499 the reduced expression of 
miRNA-30, miRNA-182, and miRNA-526 are associated with HF 
development and progression[64-66]. Therefore, altered microRNA 
expression in human heart was found in ischemic cardiomyopathy, 
dilated cardiomyopathy, and aortic stenosis[67,68]. There is evidence 
that the disproportion between myocardial expressions of alpha- and 
beta-myosin heavy chain (MHC) might be associated with over-
expression of heart-specific miRNA-208a leading to arrhythmia, 
fibrosis, and cardiac hypertrophy[69]. Nevertheless, miRNA-208a 
expression is under negatively control of MED13, a subunit of the 
mediator complex, which controls transcription by thyroid hormone 
and other nuclear hormone receptors[70]. The down-regulation of 
miRNA-1 and up-regulation of miRNA-195 are necessary for 
cardiac hypertrophy and HFpEF development, while the underlying 
molecular mechanisms of these effects are not still clear[65,71]. Finally, 
cardiac hypertrophy may associate with the activation of Nppa, 
Nppb, and Acta1 (skeletal α-actin) fetal gene program[72]. It has 
deemed that the key components of cardiomyocyte hypertrophy 
mediator might be miRNA-dependent regulator of calcium signaling 
pathways[73]. Whether altered signature of miRNA is considered a 
clue for cardiac hypertrophy and dysfunction, low number of direct 
clinical evidence regarding specifically HF phenotypes’ development 
relating to miRNA signature remains a part of scientific discussion[59].
    In conclusion, the current available data preliminary clarify that 
epigenetic modifications might be discussed as a clue of forming 
phenotypes of HF, whereas there is no strong evidence regarding 
epigenetic signatures represent causal pathways leading to specific 
forms of cardiac remodeling associated with HFrEF or HFpEF. More 
investigations are required to discover epigenetic regulation features, 
because of progress in this setting appears to be more much promised 
for individualized translation medical care. 
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