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INTRODUCTION
The continued growth in radiographic procedures for either 
diagnostic or therapeutic purposes (coronary angiography and 
percutaneous coronary interventions) is leading to an increasing 
number of cases of contrast-induced Acute Kidney Injury (CI-AKI) 
secondary to Iodinated RadioContrast Agents (IRCA)[1-3]. This is in 
part due to the type of patients undergoing these procedures, usually 
being of advanced age, with one or more comorbid conditions, such 
as advanced vascular disease, severe long-standing hypertension, 
diabetes and some renal function impairment[4-7].

THE IODINATED RADIOCONTRAST AGENTS 
(IRCA)
In the last few decades, attempts have been made by many 
investigators to reduce the nephrotoxicity of IRCA making them 
more soluble, while at the same time allowing more opacity by 
increasing the content of iodine atoms per molecule. Thus, IRCA 
have undergone a series of chemical modifications. Firstly, hydrogen 
atoms on the benzene ring have been substituted in order to reduce 
protein binding: acetrizoates and diatrizoates were obtained in this 
way. These compounds are ionic and are known as high-osmolar 
contrast media. The next step was to replace the carboxyl groups 
with non-polar groups giving non-ionic soluble molecules with 
lower osmolality (low-osmolar contrast media); these were further 
improved by the addition of more hydroxyl groups for increased 
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ABSTRACT
The continued growth in radiographic procedures for diagnostic or 
therapeutic purposes is leading to an increasing number of cases 
of contrast-induced Acute Kidney Injury (CI-AKI) secondary to 
Iodinated RadioContrast Agents (IRCA). In this review, following 
a brief description of IRCA and CI-AKI, the pathogenesis of CI-
AKI is discussed in detail, particularly focusing on the direct toxic 
effects by IRCA on endothelial cells, red blood cells and mainly on 
renal tubular epithelial cells. In vitro studies of the effects of different 
IRCA on various signalling pathways known to play a role in cellular 
survival, growth and proliferation are reported, demonstrating that 
IRCA cause several and significant changes in a variety of cell 
signalling molecules that play important roles in cellular homeostasis. 
Factors favouring toxic effects by IRCA on renal tubular epithelial 
cells and protection of tubular cells against IRCA toxicity (by 
e.g. asialoerythropoietin, human serum albumin–Thioredoxin, 
extracellular volume expansion) are discussed. Measures to 
prevent IRCA nephrotoxicity by antioxidants and recent studies 
demonstrating reversal of IRCA toxicity on human renal proximal 
tubular cells by white grape juice extract conclude the review.
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small changes of GFR when GFR is high. It has been thought that 
estimates of small changes of renal function based on a rise in serum 
cystatin C to be more accurate than those based on a rise in SCr when 
the GFR is near to the normal range. Thus, the behaviour of SCr has 
been compared to that of cystatin C, although unfortunately, it has 
turned out that the relationship between serum cystatin C and GFR 
was also exponential[22]. Equations based on standardized cystatin C 
(CKD-EPI cystatin C equation) or cystatin C and creatinine (combined 
CKD-EPI equation) were then proposed by the CKD-EPI consortium 
in 2012[23]. The better suitability of these equations (and especially 
the combined CKD-EPI equation) has been shown in different 
populations[24-26]. It has been recently observed that eGFRcr-cys, 
but not eGFRcys, is more accurate than eGFRcr in measuring small 
changes in renal function[27]. Even the recent KIDGO guidelines 
on CKD[28] recommended using eGFRcr for the initial evaluation 
and using eGFRcys or eGFRcr-cys for confirmation in the clinical 
settings in which eGFRcr is less accurate. But other Authors[29,30] 
found that estimates of GFR based on cystatin C were not superior 
to those based on SCr in the general population. In other words, 
there is no evidence that equations based on cystatin C alone or in 
combination with creatinine provide better GFR estimates in middle-
aged members of the general population than the commonly used 
MDRD and CKD-EPI equations.
    Sometimes CI-AKI may cause a severe impairment of renal 
function with oliguria (<400 mL/24 hrs), requiring dialysis. In such 
circumstances, according to the KDIGO Group[16], it is reasonable 
to talk of Acute Renal Failure (ARF). In these cases the mortality 
is high. The clinical feature and the management of ARF caused by 
IRCA are the same as that for ARF due to other causes[31-37].
    CI-AKI is uncommon in patients with normal pre-existing renal 
function. It occurs more frequently in patients with renal impairment, 
particularly if associated with diabetes mellitus[38].

PATHOGENESIS OF CONTRAST-INDUCED 
ACUTE KIDNEY INJURY (CI-AKI)
The pathogenesis of Acute Kidney Injury (AKI) secondary to 
Iodinated RadioContrast Agents (IRCA) is not fully understood. 
Many factors are involved (Figure 1):
    (1) Hemodynamic changes: after intravascular injection, IRCA 
cause immediate and transient vasodilatation followed by prolonged 
vasoconstriction, leading to renal ischemia, especially in the outer 
renal medulla; the consequence will be a decrease of Renal Blood 
Flow (RBF), thereby leading to a decrease in the GFR[13,39].
    (2) Renal medullary hypoxia: resul t ing from (a) the 
vasoconstriction of vasa recta[40,41], (b) changes in erythrocyte  
membrane skeleton[40] (see later), (c) increase in tubular reabsorption 
in the thick ascending limb of Henle’s loops (see later).

Name
Ionic
Diatrizoate (Hypaque 50)
Metrizoate Isopaque (Conray 370)
Ioxaglate (Hexabrix)
Nonionic
Iopamidol (Isovist-370)
Iohexol (Omnipaque 350)
Iodixanol (Visipaque 320)

Table 1 Iodinated Contrast Media Commonly Used in Clinical Practice.
Type

Monomer
Monomer
Dimer

Monomer
Monomer
Dimer

Iodine content (mg/mL)

300
370
320

370
350
320

Osmolality mOsm/kg

1550
2100
580

796
884
290

Osmolality type

HOCM
HOCM
LOCM

LOCM
LOCM
IOCM

Viscosity, cps at 37°C

10.50
3.40
7.50

9.40
10.40
11.80

The osmolality of contrast media is compared with the osmolality of plasma; HOCM: High Osmotic Contrast Media have the highest osmolality, i.e. 5–8 
times the osmolality of plasma; LOCM: Low Osmotic Contrast Media have an osmolality still higher than plasma, i.e. 2–3 times the osmolality of plasma; 
IOCM: Iso Osmotic Contrast Media have the same osmolality as plasma. Cps: Viscosity in Centipoise; (Reproduced from ref. [12] with permission; Data of 
viscosity from ref. [173].)

hydrophilicity, followed by a more even distribution of the hydroxyl 
groups on the molecule. Finally, the dimerization of two molecules 
via side chains on the benzene ring resulted in the non-ionic and 
iso-osmolar group of contrast media with increased iodine atoms 
per molecule[8,9]. Thus, these chemical modifications have resulted 
in the availability of newer low-osmolar and iso-osmolar IRCA 
immediately used in clinical practice, and it is acknowledged that 
the low-osmolar IRCA and iso-osmolar IRCA are less nephrotoxic 
than high-osmolar IRCA[10]. Despite this, in vitro cell culture studies 
have suggested that all of these types of IRCA still have a direct 
toxic effects on many different types of cells and may cause CI-AKI. 
Modern IRCA are based on the triiodinated benzene ring[9]. The most 
common IRCA used in clinical practice are listed in table 1[11,12].

CONTRAST-INDUCED ACUTE KIDNEY IN-
JURY (CI-AKI)
The most important adverse effect of IRCA is undoubtedly CI-
AKI, frequently called Contrast-Induced Nephropathy (CIN). It is 
an asymptomatic transient impairment of renal function, usually 
non-oliguric, occurring 24-72 hours after exposure to intravascular 
injection of IRCA that cannot be attributed to other causes[13-15]. 
The KDIGO Group[16] “proposes that the term Contrast Induced-
Acute Kidney Injury (CI-AKI) (rather than CIN) be used for patients 
developing AKI secondary to intravascular radiocontrast media 
exposure”.
    The decline of renal function is mirrored by the rise in serum 
Creatinine (SCr) that reaches its peak on the third to fifth day after 
the injection of IRCA and returns to baseline within 10-14 days[17]. 
The extent of the rise in SCr for defining CI-AKI following the 
intravascular injection of IRCA is an increase in either its absolute 
value (by 0.5 mg/dL or greater) or its relative value (by 25% or 
greater on the baseline value). CI-AKI may also be defined as a 
decrease (to 30-60 mL/min/1.73m2 - renal insufficiency-or less) in 
the estimated glomerular filtration rate (eGFR), i.e. the creatinine 
clearance calculated by using either the MDRD (Modification of Diet 
in Renal Disease) calculation[18] or the CKD-EPI (Chronic Kidney 
Disease Epidemiology Collaboration) equation[19], or the very simple 
Cockcroft-Gault formula[20].
    Some Authors have suggested that an evaluation of renal function 
by serum Cystatin C (or the CKD-EPI cystatin C equation) is better 
than SCr. Undoubtedly, since the relationship between SCr and GFR 
is exponential, small SCr differences will greatly impact the GFR 
values at low SCr values (corresponding to high GFR values), but 
the same difference will have minimal impact at high SCr values 
(corresponding to low GFR values)[21]. Therefore, to detect the 
early impairment of renal function due to nephrotoxic radiographic 
contrast media, it is important to have a marker which is sensitive to 
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Figure 1 The complex mechanisms by which iodinated radiographic contrast media cause the fall of GFR (Reproduced from ref. [40] with permission).

    (3) Tubular obstruction due to the increase in intratubular pressure 
due to the increased viscosity of the renal tubular fluid, thereby 
contributing to the decrease in the GFR[39].
    (4) Formation of reactive oxygen species (ROS)[42-44], caused 
both directly by IRCA and by renal medullary hypoxia; they are 
responsible for (a) endothelial and tubular epithelial cell damage, 
(b) increase of renal parenchymal hypoxia by virtue of endothelial 
dysfunction and dysregulation of tubular transport[45,46] (c) decrease 
of NO synthesis that is believed to be due to its reaction with ROS, 
in particular superoxide anions (O2

.-)[47,48], leading to the formation of 
the more powerful oxidant detrimental peroxynitrite anion (ONOO-)
[49].
    (5) Direct cytotoxicity, which has been suggested to be due, at least 
in part, to the free iodine present in solutions of IRCA that may lead 
to apoptosis and cell death of both endothelial and tubular cells[47].
    Many in vitro studies have investigated the toxicity of IRCA using 
different types of cultured cells: renal epithelial cells, mesangial 
cells, endothelial cells, smooth muscle cells, hepatic cells, human 
fibroblasts, pulmonary mast cells, human embryonic kidney cells and 
human neutrophils.

DIRECT TOXIC EFFECTS BY IRCA ON ENDO-
THELIAL CELLS
All IRCA exhibit a more or less strong effect on endothelial cells[50-53].
    The endothelial cells are the first to come in contact with 
intravascular-injected IRCA. The endothelial damage, represented 
by nuclear protrusion, cell shrinkage, fenestration of the endothelial 
layer and formation of microvilli (‘blebbing’) on the cell membrane, 
and cellular apoptosis have been observed by scanning electron 
microscopy[54]. The damaged endothelial cell (a) may contribute to 
the decrease in NO in the vasa recta[47] and (b) may release endothelin 
that causes vasoconstriction (Figure 1). Heyman et al[55] have, in 
fact, demonstrated that the i.v. administration of contrast media 

in rats induced an increase in plasma concentration of endothelin; 
furthermore, contrast media stimulated endothelin release from 
cultured bovine endothelial cells. These results suggest a direct effect 
of ionic and nonionic contrast agents on vascular endothelium to 
release endothelin[39].

DIRECT TOXIC EFFECTS BY IRCA ON RED 
BLOOD CELLS
IRCA exhibit a toxic effect also on erythrocytes[56-63].
    Human erythrocytes circulating in the body are normally 
biconcave discocytes. Their excess surface area and the elasticity 
of their membranes provide them with the flexibility needed to pass 
through very small capillaries, demonstrating an ability for repeated 
large deformation[64].
    The erythrocyte membrane consists of a phospholipid bilayer with 
embedded membrane proteins and is associated on the cytoplasmatic 
side with a network of proteins, the membrane cytoskeleton[65]. The 
bicarbonate/chloride exchanger band3 is the most abundant protein 
in the erythrocyte membrane[66]. It has a very important role in gas 
exchange, senescence and removal of cells from the circulation, and 
functions as a point of attachment for the cytoskeleton, maintaining 
the mechanical and osmotic properties of the erythrocyte, i.e. 
membrane stability and flexibility[67,68]. An intact cytoskeleton is vital 
for normal cell shape.
    Under the influence of various agents, human erythrocytes change 
their shapes from the discocytes to stomatocytes or echinocytes[69]. 
Some radiographic agents induce shape changes from discocytic to 
echinocytic cells[56,60,70]. The echinocyte formation is associated with 
a rigidification of the cells bearing the risk of a hindered capillary 
passage of the echinocytes[64], thereby contributing to the outer renal 
medullary hypoxia (Figure 1).
    It has been demonstrated that the incubation of erythrocytes in 
plasma supplemented with the IRCA iopromide 370 induced rounded 



bubble-like protrusions from their cell membrane containing almost 
completely long bundles of actin fibres[64].
    Two classes of IRCA, having different iodine concentrations, 
were examined for their effects on erythrocytes: Iodixanol (having 
an iodine concentration of 320 mg Iodine/mL) and Iopromide 
(370 mg Iodine/mL). Both IRCA provoked echinocyte formations 
accompanied by a reorganization of band3 and/or spectrin filaments 
with exocytosis of particles. The study revealed changes in shape 
and aggregation of erythrocytes in contact with IRCA that coincided 
with changes in the structure of the membrane skeleton. Iopromide 
induced markedly more severe alterations of the membrane skeleton 
compared to iodixanol[64].
    The formation of echinocytes and stomatocytes observed upon 
incubation of erythrocytes with IRCA may have a negative effect on 
the rheology of the blood[47], thereby impairing renal perfusion with 
increase of outer renal medullary ischemia (Figure 1).

DIRECT TOXIC EFFECTS BY IRCA ON RENAL 
TUBULAR EPITHELIAL CELLS
Thus, as we have mentioned, in the pathogenesis of CI-AKI a direct 
toxic effects by IRCA on renal tubular epithelial cells are believed to 
play an important role in causing Contrast-Induced AKI (CI-AKI)[71,72] 
(Figure 1).
    Once filtered by the glomeruli, IRCA are concentrated in the renal 
tubules, as a result of water and salt reabsorption by the proximal 
tubules, and are able to cause direct injury to the renal tubular cells. 
The consequent damage has been observed in isolated tubular 
segments and in cultured cells substantiated by disruption of cell 
integrity and apoptosis, that may be aggravated by factors, such as 
tissue hypoperfusion and hypoxia caused by IRCA and by clinically 
unfavourable conditions, such as pre-existing renal impairment, 
particularly if associated to diabetes, salt depletion, congestive heart 
failure and concurrent use of nephrotoxic drugs[47,73-78].
    In vitro cell culture studies have shown that important cell 
signalling pathways are affected by IRCA. These pathways may 
determine cell fate, such as death, survival, proliferation, release of 
hormone, and may be triggered by mechanical, chemical, light and 
thermal stimuli, and it is feasible that these signaling pathways are 
involved in renal injury and repair following the administration of 
IRCA[9].
    Characterization of some of these intracellular pathways in cells 
exposed in vitro to IRCA may shed some light on the mechanisms 
of toxicity of the IRCA and possibly help in future development of 
pharmacological therapies in order to reduce the risk of CI-AKI[79].
    Kinase-mediated intracellular signalling pathways can modulate 
cell growth, proliferation, death and inflammation[80-83]. By knowing 
these pathways it may be possible to block a cell death pathway, 
thereby modifying the extent of injury and preventing renal 
necrosis[84].
    For example, the pro-survival and pro-proliferative kinases Akt 
and ERK1/2 have been shown to be dephosphorylated (deactivated) 
whilst pro-inflammatory/cell death molecules, such as the p38 and 
JNK kinases and the transcription factor NF-kB may be activated 
by IRCA, accompanied by activation of apoptotic mediators such as 
caspases[9].
    The most important and useful cells used for evaluating the 
nephrotoxicity of IRCA are the immortalized human proximal tubular 
cell line, named HK-2, which retains the phenotypic expression 
and functional characteristic of human proximal tubular cells, as 
described by others[85-87].
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CELLULAR SIGNALLING PATHWAYS AF-
FECTED BY IRCA
Our in vitro studies have demonstrated the effects of different IRCA 
on various signalling pathways known to play a role in cellular 
survival, growth and proliferation. The incubation of human renal 
proximal tubular epithelial cells (HK-2 cells) with IRCA (diatrizoate, 
iopromide or iomeprol), in fact, caused a dramatic dephosphorylation 
(deactivation) of Akt, a kinase known to play a role in cell survival[81]. 
This was accompanied by effects on downstream targets of Akt, 
such as p70S6 kinase (inactivated) which is involved in protein 
synthesis and the FOXO (Forkhead) family of transcription factors 
(dephosphorylated and hence activated)[88]. Both diatrizoate and 
iopromide caused a decrease in HK-2 cell viability, as determined by 
the chemical reduction of MTT [3-(4,5-Dimethyl-2-thiazolyl)-2,5-
diphenyl-2H-tetrazolium bromide[89]], which was partially alleviated 
by the transfection with plasmids encoding the constitutively-
active Akt[88]. Transfection of HK-2 cells with plasmids encoding 
the constitutively active form of Akt only partially recovered cell 
viability. Diatrizoate also caused a dephosphorylation of mTOR and 
ERK1/2, kinases known to play an important role in cell proliferation 
and survival[90], which was greater with respect to iopromide, iomerol 
or iodixanol[79,88]. Western blot analysis of whole lysates prepared 
from kidneys removed from rats treated with the IRCA iomeprol and 
the IRCA iodixanol also showed lowered levels of phospho-Akt and 
phosho-ERK1/2 compared with lysates obtained from control non-
treated rats[79].
    We have also demonstrated in HK-2 cells that the high osmolar 
diatrizoate also caused a greater activation of the c-Jun N-terminal 
and p38 mitogen activated protein kinases (JNKs and p38 MAPKs 
respectively) together with a corresponding increase in the pro-
inflammatory cytokine IL-8[91-93] compared with low osmolar 
iomeprol at the same concentration of iodine[94].
    Incubation of HK-2 cells with high osmolar diatrizoate, low 
osmolar iomeprol or iso osmolar iodixanol at concentrations of 
75 and 100 mg Iodine/mL for up to 3 h did not result in caspase-3 
cleavage[79]. However, in HK-2 cells that had been previously 
exposed to diatrizoate for 2-3 h and then incubated for a further 22 
h (after removal of the IRCA), evidence for caspase-3 cleavage was 
observed[79,94].
    Since the use of large doses of IRCA represent risk for CI-AKI 
that is dose-dependent, these studies were carried out using IRCA 
doses of 75 mg Iodine/mL, based on the dosage commonly used 
in clinical practice of 1.5-2.5 mg Iodine/kg b.w., leading to plasma 
concentrations of 15-20 mg Iodine/ml. Since, in the kidney, 70-80% 
of the ultrafiltrate is re-absorbed in the proximal convoluted tubule, 
the IRCA concentration will therefore range between 75-100 mg/
mL[74,79].

DIFFERENCE BETWEEN LOW OSMOLAR 
IOMEPROL AND ISO OSMOLAR IODIXANOL
We have also studied the different effects of the IRCA iomeprol, 
iodixanol and sodium diatrizoate on renal cell cultures. Our cell 
viability studies indicate that iodixanol is toxic to HK-2 cells, but 
less so than iomeprol. Iomeprol, in fact, caused a greater decrease in 
phospho-Akt (at Ser 473) than iodixanol and this was dependent on 
the concentration of the IRCA which have been used.
    As mentioned above, cell viability was measured by the ability of 
viable cells to reduce MTT[89]. HK-2 cells were grown to a confluence 
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of approximately 90%, and incubated for 18-20 hours in serum-
free medium prior to experimentation. For experiments, cells were 
incubated for 2 hours with the IRCA; then the IRCA was removed by 
replacing the culture medium with fresh serum-free medium. Whilst 
both IRCA caused a significant decrease in cell survival with respect 
to control (non-treated) cells (p<0.001), diatrizoate (32% decrease in 
cell viability) had a significantly greater effect than iomeprol (20% 
decrease in cell viability) (p<0.001).
    Thus, we have demonstrated with diatrizoate a significantly 
greater phosphorylation (i.e. activation), of signalling molecules that 
are known to be involved in cell death, namely the JNK and p38 
MAP kinases subfamilies[82,95,96] than with iomeprol[94]. Furthermore, 
the viability of these cells have been assessed after removal of the 
IRCA stress for up to 22 h, meanwhile determining which signalling 
molecules, involved in cell death/survival, are activated/deactivated. 
Considering the proposed role of these molecules in cell death and 
apoptosis[82,95,96], the activation of these molecules by IRCA may have 
also contributed to the decrease in cell viability.
    Other studies have also supported our findings in suggesting that 
the JNK and p38 MAP kinases may be involved in IRCA-induced 
apoptosis in HEK293T cells and in LLC-PK1 cells respectively[97,98].
    In conclusion, in vitro cell culture studies have demonstrated 
that IRCA cause several and significant changes in a variety of cell 
signalling molecules that play important roles in cellular homeostasis, 
including the deactivation of molecules such as Akt and ERK1/2 that 
enable cells to survive stress and to proliferate as well as to regulate 
the synthesis of vasoactive molecules. Furthermore, other molecular 
species are increased or activated: that may be detrimental; reactive 
oxygen species and signalling molecules such as the p38 and JNK 
kinases and transcription factors such as NF-kB that may mediate 
cell death and inflammation[9].

FACTORS FAVOURING TOXIC EFFECTS BY 
IRCA ON RENAL TUBULAR EPITHELIAL CELLS
Salt depletion (frequently indicated with the term ‘dehydration’) will 
favour the toxic effects of IRCA through several mechanisms:
    (a) by increasing the direct toxic action of IRCA on renal 
tubular epithelial cells; salt depletion causes proximal tubular over-
reabsorption that will make IRCA more concentrated within the 
tubular lumen meanwhile reducing the flow rate of tubular fluid, 
consequently increasing the contact time between IRCA and tubular 
epithelial cells. Thus, salt depletion will increase the toxic effect of 
IRCA on renal tubular epithelial cells.
    (b) by increasing the renal vasoconstriction with reduction of RBF. 
Such vasoconstriction is particularly important in the outer renal 
medulla because of its peculiar anatomical reasons. The outer renal 
medulla, in fact, even under normal physiological conditions, receives 
a little amount of blood because of its distance from the descending 
vasa recta. This hypoperfusion leads to little local oxygen (O2) 
delivery despite the high local O2 consumption due to the important 
active tubular reabsorption in S3 segments of proximal renal tubules 
and in the medullary thick ascending limb of the Henle’s loops that 
are located there. Salt depletion and the consequent vasoconstriction 
will aggravate the discrepancy between low O2 delivery and the O2 
requirement. Thus, the outer renal medullary hypoxia, a crucial point 
in the pathogenesis of CI-AKI (Figure 1), is made worse by salt 
depletion[99].
    Obviously, vasoconstrictive agents, such as adenosine and 
endothelins, by increasing vasoconstriction, particularly in 
the outher renal medulla, will aggravate outer renal medullary 

hypoxia. The renal vasculature in patients with diabetes mellitus 
has a higher sensitivity to adenosine, a vasoconstrictive agent. 
Since IRCA increase the release of renal adenosine, and stimulate 
renal adenosine receptors, this may in part explain the particular 
susceptibility of diabetic patients to IRCA[14,100]. The administration 
of IRCA to diabetics acutely reduces renal parenchymal oxygenation 
through the increased production of vasoconstrictive endothelins, 
a reduction that is most prominent in the renal medulla, since it 
already functions at low oxygen tension[101]. Since diabetics already 
have increased circulating and renal endothelin levels, this also may 
in part explain the particular susceptibility of diabetic patients to 
IRCA[14].
    Outer renal medullary hypoxia leads to the formation of reactive 
oxygen species (ROS)[42,43] that may exert direct tubular and vascular 
endothelial injury and might further intensify renal parenchymal 
hypoxia by virtue of endothelial dysfunction and dysregulation of 
tubular transport[45,46] (Figure 1).
    The decrease in Nitric Oxide (NO) may be due to its reaction with 
ROS, in particular with superoxide anions (O2

.-)[47,48]. This reaction 
may lead to the formation of the more powerful oxidant peroxynitrite 
anion (ONOO-)[49] that may be more detrimental to the endothelial 
cells. Hence, the reaction of the ROS with NO not only causes a 
reduction in the levels of the vasodilator NO, but also leads to the 
formation of a potent oxidant that exacerbates cell injury[102] (Figure 1).
    Patients with chronic renal failure (CRF) have defective 
antioxidant systems[103] and increased oxidative stress associated 
with inflammation and endothelial dysfunction[104]. This may explain 
why pre-existing renal failure represents the most common condition 
predisposing to the development of CI-AKI[39].
    Concomitant use of potentially nephrotoxic drugs, such as 
aminoglycosides, vancomycin, amphotericin B, dipyridamole, 
metformin and nonsteroidal anti-inflammatory drugs will potentiate 
the toxicity of IRCA on epithelial cells[40,105].
    Undoubtedly, the toxicity is different for different IRCA. Thus, at 
equal iodine concentrations (e.g. 300 mg Iodine/mL) high osmolar 
IRCA have greater cytotoxic effects on proximal tubular cells in 
vitro than do low or iso osmolar IRCA[73]. IRCA cytotoxicity has 
been suggested to be due, at least in part, to the free iodine present in 
solutions of IRCA and that leads to apoptosis and cell death of both 
endothelial and tubular cells[47]. It is important to choose the least 
nephrotoxic radiocontrast agent: the iso-osmolar iodixanol and the 
low-osmolar iopamidol appear, in fact, to be the IRCA of first choice 
to reduce the risk of CI-AKI[106] and to use them with the lowest 
dosage possible.

INTRACELLULAR CA2+ OVERLOAD INDUCED 
BY IRCA
Under physiological conditions, the Na+/Ca2+ exchanger (NCX) can 
pump the Ca2+ outside the renal tubular epithelial cells using the 
Na+ concentration gradient across the cell membrane to keep a low 
intracellular Ca2+ level. After IRCA injection, NCX may reversely 
extrude Na+ for Ca2+ influx and result in intracellular Ca2+ overload 
that is considered to be an important factor in the pathogenesis of 
CI-AKI[107,108] (Figure 1). The increase in intracellular calcium, in 
fact, provokes a vasoconstrictive response in intrarenal circulation 
and would be an important mediator of epithelial cell apoptosis 
and necrosis. On this basis, Calcium Channel Blockers have been 
hypothesized to have protective effects against CI-AKI. But their use 
has given controversial results, sometimes protective and sometimes 
with no benefit at all[105].
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PROTECTION OF EPITHELIAL TUBULAR CELLS 
AGAINST IRCA TOXICITY BY ASIALOERYTH-
ROPOIETIN
Erythropoietin (EPO), the cytokine widely used for the treatment 
of anemia in patients with CRF, has been found to interact with 
its receptors, expressed in a great variety of nonhematopoietic 
cell types: neurons, endothelial cells, vascular smooth muscle 
cells, cardiomyocytes, mesangial cells, renal proximal tubular 
cells. On these cells EPO induces a cytoprotective cellular 
response: mitogenesis, angiogenesis, promotion of vascular repair 
and inhibition of apoptosis, independent of EPO’s effects on 
erythropoiesis[109]. Thus, EPO has been demonstrated to protect the 
kidney in experimental animals against the injury and dysfunction 
caused by ischemia-reperfusion[110,111] and to enhance recovery after 
cisplatin-induced acute renal failure in the rat[112]. But it has also 
been able to attenuate IRCA-induced ARF in rats[113]. Desialylated 
EPO (asialoEPO), is an EPO derivative that has EPO receptor– 
binding affinity similar to native EPO; it has been reported to retain 
neuroprotective activities. It has been hypothesized that asialoEPO 
could also attenuate renal injury in experimental ARF. Thus, both 
EPO and a nonhematopoietic EPO derivative, asialoEPO, have 
been recently demonstrated to prevent the development of renal 
dysfunction as assessed by biochemical parameters in a rat model of 
CI-AKI. It has also been demonstrated that either EPO or asialoEPO 
markedly suppressed renal tubular injuries as assessed by histologic 
examination when administered as a single intravenous bolus 
injection 1 h before the injection of contrast medium. In conclusion, 
both can directly prevent the contrast medium-induced apoptosis of 
renal tubular cells observed both in vivo and in vitro[109].

PROTECTION OF EPITHELIAL TUBULAR CELLS 
AGAINST IRCA TOXICITY BY HUMAN SERUM 
ALBUMIN–THIOREDOXIN (HSA–TRX)
Thioredoxin-1 (Trx) is a ubiquitous low-molecular-weight protein, 
produced in the human body in response to oxidative stress 
conditions, with protective effect against oxidative stress being ROS 
scavenger. A human serum albumin–thioredoxin fusion protein 
(HSA-Trx) has recently been obtained with a half-life 10 times 
longer than that of thioredoxin. In vivo (in rats) and in vitro (on 
human proximal tubular cells) studies have demonstrated its ROS 
scavenging activity. HSA-Trx prevented CI-AKI and renal tubular 
apoptosis, via its extended antioxidative action, in a rat model of 
ioversol-induced CI-AKI[12,114].

THE PROTECTIVE EFFECTS OF EXTRACELLU-
LAR VOLUME EXPANSION
Consistent with the increasing effect of salt depletion on toxicity 
by IRCA, the extracellular volume expansion has a protective 
effect. The expansion of intravascular volume, in fact, will suppress 
renin-angiotensin cascade and consequently will reduce renal 
vasoconstriction and hypoperfusion. Furthermore, the resulting 
increase in urine output, because of reduction of proximal tubular 
reabsorption (caused by volume expansion), will limit the duration of 
IRCA contact with renal tubules and consequently their toxicity on 
tubular epithelium[99,115,116]. In clinical practice adequate protection is 
obtained with i.v. infusion of 0.9% saline at a rate of approximately 

1 mL/kg b.w. per hour, beginning 6-12 hours before and continuing 
for up to 12-24 hours after the radiographic examination (if urine 
output is appropriate and cardiovascular conditions allow it)
[20,117]. Some Authors suggest using sodium bicarbonate hydration 
that has been shown to be superior to sodium chloride in some 
clinical studies and meta-analysis[118-128]. It is believed that the use 
of bicarbonate causes the alkalinization of tubular fluid leading to 
a reduction in the production and the neutralization of oxygen free 
radicals, thereby protecting the kidney from injury[121,122,129,130]. For 
coronary angiography or intervention, 154-mEq/L infusion of sodium 
bicarbonate as a bolus of 3 mL/kg b.w./hour for 1 hour before the 
administration of IRCA, followed by 1 mL/kg/hour for 6 hours 
during and after the procedure, have been used[119]. Unfortunately, 
other studies have not found any benefit with sodium bicarbonate 
hydration versus sodium chloride[131-134] or have even observed an 
increased incidence of CI-AKI[135].

PROTECTION OF TUBULAR DAMAGE BY 
STEROIDS
In the last few years, several studies investigated the significance 
and clinical utility of new biomarkers of kidney damage. In addition 
to biomarkers representing changes in renal function (e.g., serum 
creatinine or cystatin C), those biomarkers reflecting kidney damage 
also seem to be important: kidney injury molecule-1 (KIM-1), 
neutrophil gelatinase-associated lipocalin (NGAL). These may be 
present even when renal function has not been impaired as yet, 
thereby identifying a new category of patients, those with “subclinical 
AKI”. KIM-1 is a transmembrane protein not expressed in normal 
kidney but upregulated in dedifferentiated proximal tubule cells after 
ischemic or nephrotoxic AKI. KIM-1 was elevated in patients with 
ischemic acute tubular necrosis, but increased urinary levels of KIM-
1 have been reported also in patients with CI-AKI[136]. The biomarker 
most investigated in CI-AKI is NGAL. NGAL is a ubiquitous 25 
KDa protein, covalently bound to gelatinase from human neutrophils, 
and is a marker of renal tubular injury. Serum NGAL (sNGAL) and/
or urine NGAL (uNGAL) levels have been shown to predict AKI in 
ischemic kidney injury, including CI-AKI[136].
    It has been suggested that oral prednisone given concurrently with 
i.v. saline may protect renal tubules against the toxicity of IRCA[137]. 
This is based on the fact that steroids may have a favourable impact 
on inflammation and renal tubular cell apoptosis and necrosis, 
as observed in models of renal ischemia-reperfusion in which 
dexamethasone had a protective effect against injury. In rats with 
renal ischemia-reperfusion injury, a single dose of dexamethasone 
administered before ischemia, or at the onset of reperfusion, in fact, 
ameliorated biochemical and histologic acute kidney injury after 24 h: 
it reduced apoptosis and necrosis of proximal renal tubular cells[138].
    Thus, patients at risk of CI-AKI undergoing cardiovascular 
procedures, using either the iso-osmolar iodixanol or the low-
osmolar iohexol have been treated either with prednisone + hydration 
or hydration alone. Oral prednisone 1 mg/kg was administered 12 
hours before, at 6 am on the same day, and 24 hours following the 
procedure. Serum creatinine was tested immediately before and again 
24-48 hours after the procedure; neutrophil gelatinase-associated 
lipocalin (NGAL), kidney injury molecule-1 (KIM-1), protein and 
albumin were assayed in spot urine before and 6 hours after the 
procedure. In the absence of AKI, NGAL and KIM-1 tended to rise 
after the procedure, but to a lesser degree in the patients treated with 
prednisone (delta NGAL: hydration = +128%, prednisone = +46%; p 
= 0.26; delta KIM-1: hydration = +99%, prednisone = +11%; p = 0.02)
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[137]. These findings suggest that tubular damage was attenuated in the 
steroid-treated patients.

PROTECTIVE EFFECTS OF TRIMETAZIDIN
Trimetazidine is a drug used in clinical practice for treating angina 
pectoris, sold under the brand name Vastarel. It is a cytoprotective 
anti-ischemic agent that increases cell tolerance to ischaemia 
by maintaining cellular homeostasis[139]. Experimental studies 
demonstrated that trimetazidine prevents the deleterious effects 
of ischaemia-reperfusion at the mitochondrial levels in a dose-
dependent manner. This protective effect appears to be the key factor 
through which this drug exerts its cytoprotective activity[140]. It has 
been demonstrated that trimetazidine exerts also a potent antioxidant 
activity on various tissue preparations, protecting the epithelium from 
the deleterious effect of oxygen radicals[141].
    Onbasili et al[142] studied the efficacy of trimetazidine in the 
prevention of CI-AKI in 82 patients with high SCr undergoing 
coronary angiography/angioplasty. The drug was given orally, 20 mg 
thrice daily, for 72 hours starting 48 hours before the procedure; all 
patients were given i.v. isotonic saline (1 mL/kg). CI-AKI developed 
in only one of 40 patients who were given trimetazidine (2.5%) and 
in seven of 42 controls (17%).
    More recently Rahman et al[143] have conducted a prospective 
randomized, controlled trial to evaluate the efficacy of trimetazidine 
in the prevention of CI-AKI in 400 patients with raised SCr 
undergoing coronary angiography: 200 patients were treated with 
Trimetazidine plus normal saline and 200 patients (control) were 
given only normal saline. It was found that the incidence of CI-AKI 
was significantly (p<0.05) reduced by trimetazidine administration 
with saline in comparison with saline alone: 4% vs 14%.
    Trimetazidine inhibits the excessive release of oxygen-free 
radicals, increases glucose metabolism, limits intracellular acidosis, 
protects ATP stores, reduces membrane lipid peroxidation and 
inhibits neutrophil infiltration after ischaemia-reperfusion[142].
    The effectiveness of trimetazidin for the prevention of CI-
AKI has been histopathologically demonstrated in rats[144]. The 
histopathological shape of kidney tissues were similar in rats treated 
with IRCA plus trimetazidin and in rats not treated with IRCA.

MEASURES TO DECREASE THE OUTER RENAL 
MEDULLARY HYPOXIA
The osmotic diuresis induced by IRCA causes an increased delivery 
of tubular fluid to the thick ascending limb of Henle’s loops, thereby 
increasing the local active sodium reabsorption and consequently 
O2 demand, thereby aggravating outer renal medullary hypoxia 
(Figure 1). Thus, it has been thought that furosemide, by decreasing 
sodium reabsorption in this tubular segment[145,146], would reduce 
medullary O2 consumption and decrease renal medullary hypoxia. 
Unfortunately, several studies have demonstrated no protection 
against CI-AKI when utilizing furosemide or even deleterious 
effects[147-149], mainly related to the salt depletion caused by diuretics. 
To overcome the problem of hypovolemia caused by the diuretic, a 
perfect combination of hydration plus furosemide has been suggested, 
by delivering i.v. fluid in an amount exactly matched to the volume 
of urine produced by the patient under the effect of furosemide[150,151]. 
This procedure is accomplished by a special device, called 
‘RenalGuard’, that would guide the physician in achieving high urine 
output while simultaneously balancing urine output and venous fluid 
infusion to prevent hypovolemia[99].

MEASURES TO PREVENT IRCA NEPHROTOX-
ICITY BY ANTIOXIDANTS
Since ROS have been proven to play an important role in the renal 
damage caused by IRCA, it has been thought that antioxidants would 
prevent CI-AKI[105].
    The mostly widely used antioxidant is N-acetylcysteine that may 
act either as a free-radical scavenger or as a reactive sulfhydryl 
compound as well as a factor able to increase the vasodilating effect 
of NO[152]. Despite controversial results reported in the literature[105], 
it has been suggested to use N-acetylcysteine in high-risk patients 
either with an oral dose of 600 mg twice daily the day before and the 
day of procedure[20] or, in patients unable to take the drug orally, with 
an IV dose of 150 mg/kg over half an hour before the procedure or 
50 mg/kg administered over 4 hours[153].
    Conflicting results have been obtained with the use of the 
antioxidant ascorbic acid at a dosage of 3 g orally 2 hours before 
the procedure and 2 g during the night and in the morning after the 
procedure[154-158].
    The oral administration of either 350 mg/day of α-tocopherol or 
300 mg/day of γ-tocopherol (5 days prior to the coronary procedure 
and continued for a further 2 days post-procedure) in combination 
with 0.9% saline has been demonstrated to be effective in protecting 
against CI-AKI in patients with chronic kidney disease undergoing 
coronary procedures with low-osmolar iopromide[159,160].
    Mesna (mercapto-ethane-sulfonate Na) is an agent with antioxidant 
properties that has been shown to reduce free radicals and restore 
reduced glutathione levels after ischemic renal failure[161]. The i.v. 
administration of 1,600 mg Mesna versus placebo, together with i.v. 
hydration with 0.9% saline, resulted in the occurrence of CI-AKI in 7 
patients in the placebo group and none in the Mesna group[162].
    Nebivolol, a third-generation β1-adrenergic receptor antagonist, 
seems to have a protective effect on the kidney against CI-AKI 
through its antioxidant and NO-mediated vasodilating action[163]. At a 
dosage of 5 mg/day for one week or 5 mg every 24 hours for 4 days it 
decreased the incidence of CI-AKI in patients with renal dysfunction 
undergoing coronary angiography[105,164,165].
    Recent studies have shown a beneficial effect of statins to 
prevent CI-AKI in patients undergoing percutaneous coronary 
intervention[105,166,167]. When patients undergoing percutaneous 
coronary intervention have been given pre-treatment with 
atorvastatin, 80 mg 12 hours before intervention with another 40 mg 
pre-procedure, followed by long-term treatment of 40 mg/day, CI-
AKI was prevented[168].

REVERSAL OF IRCA TOXICITY ON HUMAN 
RENAL PROXIMAL TUBULAR CELLS BY WHITE 
GRAPE JUICE EXTRACT
In vivo studies using rats fed with grape seed proanthocyanidin 
extract[169] have been found to be protective against renal tissue 
damage due to IRCA. Since grape juice is a rich source of 
antioxidants and has been shown to increase serum antioxidant 
capacity in adults[170] and since it has also been demonstrated that 
Concord grape juice may activate Akt/PKB kinase by increasing its 
phosphorylation at Ser 473[171], it seemed feasible that grape juice 
may afford protection against the toxic effects of IRCA. Recent 
work from our laboratory investigated the action of a white grape 
juice extract (WGJe) on culture human renal proximal tubule cells 
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(HK-2) treated with the high-osmolar IRCA sodium diatrizoate, to 
evaluate any changes in the signaling pathways in these cells[172]. 
WGJe caused an increase in phosphorylation of the prosurvival 
kinases Akt and ERK1/2 in HK-2 cells. Treatment of HK-2 cells 
with 75 mg Iodine/ml sodium diatrizoate for 2.5 h and then further 
incubation (for 27.5 h) after removal of the IRCA caused a drastic 
decrease in cell viability. However, pre-treatment with WGJe, prior 
to incubation with diatrizoate, dramatically improved cell viability. 
Analysis of key signalling molecules by Western blotting showed 
that diatrizoate caused a drastic decrease in phosphorylation of Akt (at 
Ser473), FoxO1 (at Thr24) and FoxO3a (at Thr32) during the initial 
2.5 h incubation period, and WGJe pre-treatment caused a reversal 
of these effects. Further analysis by Western blotting of samples 
from HK-2 cells cultured for longer periods of time (for up to 27.5h 
after an initial 2.5h exposure to diatrizoate with or without WGJe 
pre-treatment) showed that WGJe pre-treatment caused a negative 
effect on phosphorylation of p38, NF-kB (at Ser276) and ERK1/2 
whilst having a positive effect on the phosphorylation of Akt, FoxO1/
FoxO3a and maintained levels of Pim-1 kinase[172].
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