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ABSTRACT
Genetically modified cells and animals represent a crucial tool for 
understanding gene function in development and diseases. The 
recently developed simple-to-design, easy-to-use and multiplexing 
CRISPR/Cas9 system is an efficient gene-targeting technology 
that has already stimulated innovative applications in biology and 
enabled researchers to make changes in the sequence or expression 
of any gene in virtually any cell type or organism of interest. When 
combined with large libraries of sgRNAs, CRISPR/Cas9 enables 
facile comprehensive forward genetic screens both in vitro and 
in vivo. Although challenges still remain regarding the off-target 
mutations, delivery methods as well as the frequency of homology-
directed repair, the rapid advance in CRISPR/Cas9 technology opens 
the door for gene function revealing and genome and epigenome 
editing. It can be optimistically anticipated that, in the future, 
CRISPR/Cas9 technology may revolutionize gene therapy research 
and become a convenient and versatile tool to treat a wide variety of 
human diseases.
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EDITORIAL
The last two decades have witnessed a rapid progress in genetic 
sciences. Despite tremendous advances in high-throughput 
sequencing technology and the rapid generation of whole-genome 
sequencing data for large numbers of all types of organisms, 
elucidation of the underlying molecular mechanism of genes 
influencing individual phenotypes remains a major challenge facing 
the researchers. A rational way to elucidate the function of a gene or 
a gene mutation is to silence or overexpress it in living organisms. 
Conventional genetic engineering methods have generally been 
limited to random addition of new pieces of DNA into the host 
genome without any control on the insertion loci of interest and 
insertion copy numbers, thus not allowing the editing of specific DNA 
sequence in their natural context. New genome editing approaches 
that built on engineered, programmable and highly specific nucleases, 
which can induce site-specific changes in the genome of cellular 
organisms through a sequence-specific DNA-binding domains and 
a nonspecific DNA cleavage domain have emerged and are widely 
used in the studies of functional genomics, transgenic organism and 
gene therapy. 
    The first well studied artificial nuclease system is zinc-finger 
nucleases (ZFNs)[1-4]. Zinc fingers are small protein structural motifs 
that are typically 25-30 residues long and possess two cysteine and 
two histidine residues that coordinate a zinc ion. Zinc finger DNA 
binding proteins typically contain two or more zinc fingers with each 
finger interacting with 3 base pairs of DNA, typically interacting 
with contiguous 3-base pair recognition sites. By fusing a zinc-finger 
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and an invader-targeting spacer portion, which guides Cas to cleave 
foreign nucleic acid by Cas proteins at sites complementary to the 
crRNA spacer sequence. More than 40 different Cas protein families 
have been reported, which are primarily classified into three types (I, 
II, and III)[30-32]. The type II CRISPR/Cas system utilizes Cas9, a large 
multifunctional protein with two putative nuclease domains (HNH[29,30] 
and RuvC-like[29]), to cleave dsDNA, whereas Type I and Type III 
systems require multiple distinct effectors acting as a complex[33,34]. 
CRISPR/Cas9 has been demonstrated to be a simple and efficient 
tool for genome engineering. 
    In endogenous CRISPR/Cas9 system, mature crRNA is combined 
with trans-activating crRNA (tracrRNA), a small RNA that is trans-
encoded upstream of the type II CRISPR-Cas locus and is essential 
for crRNA maturation by ribonuclease III and Cas9[35], to form a 
tracrRNA:crRNA complex that guides Cas9 to a target site. Cas9 
unwinds the DNA duplex and searches for sequences matching 
the crRNA to cleave. Target recognition occurs upon detection of 
complementarity between a “protospacer” sequence in the target 
DNA and the remaining spacer sequence in the crRNA. Importantly, 
Cas9 cuts the DNA only if a correct protospacer-adjacent motif (PAM) 
is also present at the 3’ end. PAM is a short sequence motif adjacent 
to the crRNA-targeted sequence on the invading DNA, playing an 
essential role in the stages of adaptation and interference in type I and 
type II systems[36,37]. Different Type II systems have differing PAM 
requirements. The S. pyogenes system requires an NGG sequence[34], 
S. thermophilus Type II systems require NNAGAA for CRISPR1[23,25] 
and NGGNG for CRISPR3[33,38], while Neisseria meningiditis 
requires NNNNGATT[39]. After binding to the target site, the DNA 
single-strand matching crRNA and opposite strand are cleaved, 
respectively, by the HNH nuclease domain and RuvC-like nuclease 
domain of Cas9, generating a double-strand break (DSB) at the target 
site[33,34]. The CRISPR/Cas9 induced DSB will trigger cellular DNA 
repair processes, including nonhomologous end-joining (NHEJ)-
mediated error-prone DNA repair and homology-directed repair 
(HDR)-mediated error-free DNA repair, both of which can be used to 
achieve a desired editing outcome. In NHEJ-mediated DNA repair, 
the break ends are directly ligated without the need for a homologous 
template, generating small insertion and deletion mutations at target 
sites. These mutations can help us to disrupt or abolish the function 
of target genes or genomic elements. If the insertion or deletion 
occurring within a coding exon can lead to frameshift mutations and 
premature stop codons, gene knockouts are achieved[40]. In contrast 
to NHEJ-mediated DNA repair, HDR-mediated error-free DNA 
repair requires a homology-containing donor DNA sequence as 
repair template. The repair template can either be double stranded 
DNA with homology arms flanking the insertion sequence, or single-
stranded DNA oligonucleotides (ssODNs). ssODNs provides an 
effective and simple method for making small edits in the genome, 
such as the introduction of single nucleotide mutations[41]. However, 
HDR is generally active only in dividing cells and typically occurs 
at lower frequencies than NHEJ[42]. For easy application in genome 
editing, the dual tracrRNA:crRNA was then engineered as a single 
guide RNA (sgRNA), which was a chimeric RNA containing all 
essential crRNA and tracrRNA components (Figure 1)[34]. In this two-
component system, by simply changing the guide sequence of the 
sgRNA, it theoretically enables CRISPR/Cas9 to target any DNA 
sequence of interest as long as it is adjacent to a PAM. Furthermore, 
when Cas9 is coupled with several sgRNAs targeting on different 
sites, CRISPR/Cas9 is able to simultaneously induce genomic 
modifications at multiple genes or multiple independent sites of the 
same gene[25,36], accelerating the study of gene function and epistatic 
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DNA-binding domain with a nonspecific cleavage domain from the 
type IIS restriction endonuclease FokI, ZFNs can be engineered to 
target desired DNA sequence and induce DNA double strand break. 
The nuclease domain requires dimerization to be active, and thus 
two individual ZFNs must bind opposite strands of DNA with their 
C-termini a certain distance apart to facilitate dimerization of the 
nuclease domain[1,2,5-11]. Although ZFNs are effective genome editing 
tools and numerous innovations to improve the utility of ZFNs have 
occurred, the technical challenges inherent in designing and validating 
engineering zinc-finger proteins for a specific DNA locus of interest 
have limited their use beyond by experts in the field. In 2009, the 
genome editing field has further expanded with the development of 
transcription activator-like effector nucleases (TALENs)[12,13]. TALEs 
are transcriptional activators that specifically bind and regulate plant 
genes during pathogenesis. Within the TALE structure, a repeated 
highly conserved 33-34 amino acid sequence with the exception of 
the 12th and 13th amino acids that mediate DNA recognition. These 
two locations are highly variable (Repeat Variable Di-residue, RVD) 
and show a strong correlation with specific nucleotide recognition. 
Each unit of a TALE protein recognizes only a single base pair. 
This simple relationship between amino acid sequence and DNA 
recognition has allowed for the engineering of specific DNA binding 
domains by selecting a combination of repeat segments containing 
the appropriate RVDs, which is much easier than zinc fingers to 
produce and validate, enabling much more widespread applications in 
genome editing[14-20]. The recent emergence of the CRISPR (clustered 
regularly interspaced short palindromic repeats)/Cas9 system, which 
depends on small RNA guided sequence-specific cleavage, however, 
has transformed the genome engineering fields by removing the need 
for any expertise in protein engineering[21-26]. 
    CRISPRs were firstly discovered from the genome of Escherichia 
coli in 1980s and had been described as a series of direct repeats 
interspaced with short sequences[27]. Later studies have shown that 
CRISPR/Cas exists in nearly 40% genomes of sequenced bacteria 
and nearly 90% genomes of sequenced archaea[28]. Based on the 
observations that many spacer sequences within CRISPRs derive 
from plasmid and viral origins, CRISPRs loci can be transcribed 
and that cas (CRISPR-associated gene) encode proteins with 
putative nuclease and helicase domains, CRISPRs were predicated 
as an adaptive defence system that use antisense RNAs as memory 
signatures of past invasions[29]. However, it was not until in 
2007 that infection experiments with lytic phages provided the 
first experimental evidence of CRISPR/Cas-mediated adaptive 
immunity. In those studies, bacteria integrated new spacers derived 
from phage genomic sequences. Removal or addition of particular 
spacers modified the phage-resistance phenotype of the cell. Thus, 
CRISPR, together with associated cas genes, provided resistance 
against phages, and resistance specificity is determined by spacer-
phage sequence similarity[21]. In 2008, Brouns et al found that 
mature CRISPR RNAs (crRNAs) served as guides in a complex 
with Cas proteins to interfere with viral proliferation[22]. Functional 
CRISPR-Cas loci consist of a series of conserved repeated sequences 
interspaced by distinct non-repetitive sequences named spacers that 
encode the crRNA components and an operon of cas genes encoding 
the Cas protein components. After the first infection of viruses or 
phages, invading foreign DNA is processed by Cas nucleases into 
small DNA fragments, which are then incorporated into CRISPR 
locus of host genomes as the spacers. In response to virus or phage 
infections, the spacers are used as transcriptional templates for 
producing precursor crRNA (pre-crRNA) that undergoes maturation 
to generate individual crRNAs, each composed of a repeat portion 



relationships[43-45]. For this reason, the CRISPR/Cas9 has been rapidly 
and widely adopted by the scientific community to target, edit, or 
modify the genomes of a vast array of cells and organisms. 
    As a robust genome editing tool, CRISPR/Cas9 enables 
researchers to precisely manipulate specific genomic elements 
not only in mammalian genomes[25,46-49] but also in the genomes of 
rat[50], mice[43,51], zebrafish[37,52-54], Drosophila[55-60], C. elegans[61-64], 
Bombyx mori[65-68], bacteria[69-71] as well as in crop plants[72-77]. 
Targeting with multiple sgRNAs (multiplexing) was also successfully 
achieved[25,48]. When combined with lentiviral sgRNA library, a 
pooled, loss-of-function genetic screening approach suitable for both 
positive and negative selection was developed, establishing Cas9/
sgRNA screening as a powerful tool for systematic genetic analysis 
in mammalian cells[78,79]. Recently, the genome-wide CRISPR/
Cas9-mediated loss-of-function screen was further developed 
to systematically assay gene phenotypes in cancer evolution in 
vivo[80,81]. It can be anticipated that this high-throughput sequencing 
tool will not only facilitate the rapid identification of genes that 
participate in certain biological processes but will also enable large-
scale screening for drug targets and other phenotypes. Another 
important application of CRISPR/Cas9 system is in the research of 
transcriptional regulation. By targeting on the transcription-related 
functional sites, CRISPR/Cas9 can regulate the transcription of 
specific genes. However, this process is irreversible due to permanent 
DNA modifications. To develop a CRISPR inference (CRISPRi) 
system for RNA-guided transcription regulation beyond permanent 
modification of DNA, sgRNA was co-expressed with a catalytically 
defective Cas9 mutant (dCas9) to form a recognition complex, which 
could interfere with transcriptional elongation, RNA polymerase 
and transcription factor binding[82-84]. Demonstrated first in E. coli, 
whole-genome sequencing showed that there were no detectable off-
target effects[83]. CRISPRi has also been proved to repress multiple 
target genes simultaneously, and its effects are reversible[83,85]. After 
fusion with repressive or activating effector domains, dCas9 together 
with sgRNA, could implement precise and stable transcriptional 
control of target genes, including transcription repression (CRISPRi) 
and activation (CRISPRa) with high specificity[82,86]. Similar to 
those performed using RNAi, dCas9 can be used as a modular and 
flexible DNA-binding platform for the recruitment of proteins to a 
target DNA sequence, laying the foundation for future experiments 
involving genome-wide screening. The CRISPR/Cas9 system has 
also been employed for efficient correction of genetic disease[87,88]. 
A dominant mutation in the Crygc gene responsible for cataracts 
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was successfully corrected in mice by co-injection of CRISPR/Cas9 
with an exogenously supplied oligonucleotide into zygotes[88]. The 
CRISPR/Cas9 system can be further developed as an imaging tool for 
imaging of specific loci, by fusing dCas9 with fluorescent proteins, in 
live cells[89], and developed as a new therapeutic strategy against viral 
infections, disrupting proviruses, eliminating viral genomes and thus 
curing viral infections[90-93]. 
    A few careful studies, however, duly raised concerns that CRISPR/
Cas9 had tolerance to base pair mismatches between gRNA and its 
complementary target sequence. Cas9 can cleave the target DNA 
both in vitro[34] and in mammalian[25] and bacterial cells[70] when 
complexed with a crRNA that contains a one-base mismatch with 
the target sequence. More recently, three group independently 
showed that CRISPR/Cas9 can induce off-target mutations even the 
mismatch up to 5 nt[26,94,95]. Since CRISPR/Cas9 tolerates mismatches 
especially in the 5’ upstream region, but not in the seed region of 
6-11 nt that is immediately upstream of the PAM sequence, target 
sites should be carefully selected so that none or very few of the 
seed region sequence of the designed sgRNA exist at any other 
location of the genome[26,94,96]. Another important factor in tolerance 
to mismatches is the amount of Cas9 enzyme expressed in the 
cells. Usually, high concentration of the enzyme increases off-site 
targeting, whereas lowering the concentration of Cas9 increases 
specificity while diminishing on-target cleavage activity[94,95]. As 
mentioned previously, the DNA single-strand matching crRNA and 
opposite strand are cleaved by the HNH nuclease domain and RuvC-
like nuclease domain of Cas9 respectively[33,34], mutating either 
domain in Cas9 generates a variant protein with single-stranded 
DNA cleavage (nickase) activity. With the principle that two adjacent 
off-target binding events and subsequent cleavage are less likely to 
occur than a single off-target cleavage, Cas9 nickase with paired 
gRNAs properly positioned on the target DNA exhibits low off-target 
mutagenesis compared to wild-type Cas9[97-102]. Also there are studies 
use an sgRNA-guided dCas9 fused to the FokI nuclease where 
two fused dCas9-FokI bind target sites at a defined distance apart, 
inducing DNA double strand break after dimerization of the two 
monomers[103,104]. Additionally, following the reasons that the 5′-end 
nucleotides of the sgRNAs are not necessary for their full activity, 
however, they may compensate for mismatches at other positions 
along the guide RNA-target DNA interface, leading to off-target 
mutations, shorter sgRNAs truncated by two or three nucleotides at 
the distal end relative to the PAM can be used in the double nicking 
strategy to further reduce off-target activity[105].

CONCLUSION
In conclusion, the RNA-guided, two component CRISPR/Cas9 
system offers several advantages over the previous protein guided 
counterparts. The simple-to-design, easy-to-use and multiplexing 
technology has already stimulated innovative applications in 
biology and enabled researchers to make changes in the sequence 
or expression of any gene in virtually any cell type or organism of 
interest. When combined with large libraries of sgRNAs, CRISPR/
Cas9 enables facile comprehensive forward genetic screens both 
in vitro and in vivo. Furthermore, this gene editing tool has shown 
therapeutic potentials for genic diseases, infectious diseases and 
cancer. Despite the great potential of CRISPR/Cas9 in genome 
editing, challenges still remain regarding the off-target mutations, 
delivery methods as well as the frequency of homology-directed 
repair. However, with the rapid advance in CRISPR/Cas9 technology, 
it opens the door for gene function revealing and genome and 

Figure 1 Illustration of CRISPR/Cas9-mediated genome editing. The dual 
tracrRNA:crRNA is engineered as a single guide RNA (sgRNA), which is a 
chimeric RNA containing all essential crRNA and tracrRNA components. 
sgRNA guides Cas9 to a target site when detects complementarity between 
a “protospacer” sequence in the target DNA and the remaining spacer 
sequence in the crRNA. After binding to the target site, the DNA single-
strand matching crRNA and opposite strand are cleaved by the HNH 
nuclease domain and RuvC-like nuclease domain of Cas9 respectively, 
generating a double-strand break (DSB).
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