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ABSTRACT
A pharmacophore model has been generated and 3D-QSAR studies 
performed on a set of fifty fluorinated compounds having known 
activities for PDHK inhibition (IC50 values ranging from 0.1 µmol 
L-1 to 100.0 µmol L-1). Common pharmacophore hypotheses have 
been developed and a predictive atom based 3D-QSAR model is 
further generated for all the surviving hypotheses. All the statistical 
parameters calculated for the obtained model (AHH.2) have been 
found to be satisfactory. The model obtained suggests that the 
presence of hydrophobic groups and ability to form hydrogen 
bonds are the two vital features which play significant roles in the 
activity of the selected ligands. The binding site of the protein is 
hydrophobic in nature and hence the presence of –F in the binding 
compounds enhances their inhibiting property. An excellent 
correlation between the calculated and experimental IC50 values of 
the compounds has been obtained. Virtual screening of a database 
comprising 2924 commercially available drug molecules has been 
performed to ensure the validity of the model developed. A total 
of 1263 compounds, which show good fit to the model, have been 
docked to the PDHK protein for further study of their binding 
affinities and interaction with the protein. A few of these are short-
listed for further evaluation.
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INTRODUCTION
The pyruvate dehydrogenase complex (PDC) plays an essential 
role in catalyzing the key step of vital metabolic processes such 
as oxidation of glucose or decarboxylation of pyruvate through 
the highly regulated and synchronized action of multiple enzyme 
subunits[1]. PDC consists of multiple copies of three enzymes: 
pyruvate dehydrogenase (E1), dihydrolipoylacetyltransferase (E2), 
and dihydrolipoyl dehydrogenase (E3)[2]. The complex is regulated 
via reversible phosphorylation, catalyzed by several specific kinases 
and phosphatase isozymes. PDHK is the isozyme of the pyruvate 
dehydrogenase kinase family which inactivates the pyruvate 
dehydrogenase complex (PDC). Four PDHK isozymes (PDHK1, 
PDHK2, PDHK3 and PDHK4), which are different in respect of 
their structure, binding to E2 and tissue distribution, are known for 
regulating the mammalian PDC[3-5]. The structure of PDHK consists 
of two domains: the amino-terminal domain (R domain) and the 
carboxyl- terminal domain (K domain)[6]. PDHK is bound to the E2 
component[7]. 
    The reduced activity of PDC affects the formation of acetyl-
CoA, which in turn raises the blood glucose level, causing type 
2 diabetes. Hence, the PDC activators or PDHK inhibitors can 
increase the glucose utilization in the body and be effective for 
the treatment of type 2 diabetes[8]. Therefore, in order to increase 



the activity of PDC, PDHKs need to be inhibited. A number of 
compounds in this category, namely AZ12 (N-{4-[(ethylanilino)
sulfonyl]-2-methylphenyl}-3,3,3-trifluoro-2-hydroxy-2-methylp-
ropanide), Nov3r4-{(2,5)-dimethyl-4-[3,3,3-trifluoro-2-hydro-
xy-2-methylpropanoyl]piperozinyl}carbonyl)benzonitrile), and 
AZD7545 ((2R)-N-{4-[4-(dimethylcarbamoyl)phenylsulfonyl]-2-
chlorophenyl}-3,3,3-trifluoro-2-hydroxy-2-methylpropanamide), 
have already been evaluated for their PDHK inhibition activity, and 
their crystal structures in complexation with PDHK isoforms have 
also been determined[9-12]. 
    The rapid increase in the study of biologically active fluorinated 
compounds in the pharmaceutical field has come up because of a 
greater understanding of the impact of fluorine on the physical and 
chemical properties of organic molecules. This trend has been aided 
by the development of new synthetic methodologies and fluorinated 
reagents for incorporating fluorine or fluorinated substituents into the 
desired framework. Fluorinated compounds have shown efficacy as 
antibacterials, antifungicides, antibiotics and anticancer agents[13].
    Pharmacophore modeling and virtual screening have become 
popular tools to test the commercially available molecules 
computationally so that they can further be tested for their potency. 
In the present work, PDHKs have been computationally targeted for 
developing specific non-toxic inhibitors based on 9-(trifluoromethyl)-
9H-fluorin-9-ol and its analogues. The inhibitory concentrations 
(IC50) against PDHK for the studied compounds are available in 
the literature[14], which enabled us to develop quantitative structure 
activity relationships (QSAR) to predict their biological activities. 
The pharmacophore model was developed for the active site of 
PDHK, followed by 3D-QSAR of the inhibitors. The developed 
pharmacophore model was then used to virtually screen a library 
of known and commercially available drug molecules to find out 
more potent and non-toxic PDHK inhibitors. The chosen chemical 
database has been successfully screened to identify hits through 
computer-aided screening or virtual screening, which reduces the 
time and cost of research effectively[15-19]. The intensity with which 
a particular molecule can inhibit PDHK2 has been judged on the 
basis of two important criteria: fitness to the pharmacophore and 
3D-QSAR model AHH.2 and good binding affinity within the PDHK 
active site. Finally, the screened compounds have been docked into 
the protein and Prime-MM/GBSA calculations performed to evaluate 
their binding energies.

COMPUTATIONAL DETAILS
A dataset comprising fifty compounds having a wide range of 
activity (IC50 values ranging from 0.1 µmol L-1 to 100.0 µmol L-1) 
was selected from the literature[14]. In order to build a pharmacophore 
model, the module PHASE (Pharmacophore Alignment and Scoring 
Engine) developed by Schrödinger, Inc. was employed. The selected 
compounds are analogues of 9-(trifluoromethyl)-9H-fluorin-9-ol, and 
are listed in Table S1 (Supplementary Information, SI). To normalize 
the inhibitory concentration distribution, all the IC50 values were 
converted to pIC50 using the relation pIC50 = -log10(IC50). An activity 
threshold (in terms of pIC50 values) was set for these molecules so 
that we could distinguish the active ones from the inactives. This 
was done using the “Bayes classification” application of the Canvas 
1.2 program of Schrödinger. The fifty compounds were divided into 
three classes (Table S2, SI). Class I, with an activity range of 4 to 
4.5, comprises nine compounds, tagged as inactives. Class II, with an 
activity range of 4.5 to 5.4, contains 21 moderately active compounds 
and Class III, having an activity range of 5.4 to 6.6, contains 20 

active compounds. 
    The geometries of all compounds were refined using LigPrep. 
Further details[20-22] are given in the Supplementary Information. 
The conformers for each molecule were generated by running a 
mixed MCMM/LMOD (Mixed Monte Carlo Multiple Minimum/
Low Mode) search[21] with a distance-dependent dielectric solvation 
treatment and the OPLS-2005 force-field. For each molecule, the 
conformers with a maximum energy difference of 10 kcal mol-1 
relative to the global energy minimum conformer were retained. All 
these states of the compounds were used for pharmacophore model 
generation and subsequent scoring[22].
    Common pharmacophoric features (CPH) were then identified from 
a set of variants. When we tried to find common pharmacophoric 
hypotheses for 3 - 7 variant lists, the 5- 7 variant lists did not yield 
any common pharmacophore hypotheses. Only 3 and 4 variant lists 
yielded common pharmacophore hypotheses. These CPHs were then 
examined using a scoring function in the “Score Hypotheses” panel 
to yield the best alignment of the active ligands[23].
    We performed atom-based 3D-QSAR, as it takes into account 
the entire molecular structure[23-26]. We evaluated the best scoring 
hypothesis[27,28] by generating training and test sets using K-means 
clustering[29,30]. The Canvas 1.2 module of Schrödinger was used for 
this purpose. We divided the set of fifty molecules into three clusters 
given in Table S3 (SI). The clusters were created from the “atom-
pairs” type binary fingerprints of the structures. Only “atom-pairs” 
type binary fingerprints were able to divide the molecules according 
to their structural features as well as biological activity. After this, 
the first molecule of Cluster 1 was selected, followed by every third 
molecule (30% selection). This selection was continued till the last 
cluster (Cluster 3). We obtained 18 molecules for our test set and the 
remaining 32 molecules made up our training set. The PLS regression 
was carried out with a maximum number of four PLS factors to avoid 
over-fitting[22,23].
    For virtual screening, the drug database comprising a collection 
of 2924 drugs was lifted from ZINC (www.zincdocking.org)[31,32]. 
Some properties of the 2924 molecules are reported in Table S4 (SI). 
The energies of these compounds were minimized via the multiple 
minimization options available in the MacroModel application 
of Schrödinger Inc. using the OPLS-2005 force-field and force-
field defined electrostatic treatment. Using LigPrep, the ionization, 
tautomeric and stereoisomeric states for each of these molecules 
were generated before screening them through our pharmacophore 
model. A total of 4893 states were obtained for the 2924 molecules at 
physiological pH 7±2. The Lipinski’s filter was applied on these 4893 
states, leaving 2852 compounds[33,34].
    As different conformers fit the pharmacophore and 3D-QSAR 
model differently[35], we generated conformations for all 2852 
molecules using the ConfGen application of Schrödinger using 
the OPLS-2005 force-field and distance-dependent electrostatic 
treatment with a dielectric constant of 4.0. The search mode was 
rapid and an energy window of 100 kJ mol-1 was used for saving 
conformations. A redundancy check with RMSD of 1.0 Å in the 
heavy atom positions was applied to remove duplicate conformers. 
A total of 37,594 conformers were produced for all states of the 2924 
compounds. Pharmacophore-based screening was then performed on 
these compound states using the obtained model. Each representative 
was matched on all the points, i.e. acceptor and hydrophobic sites. 
A total of 1263 compounds were obtained as hits along with their 
fitness score to the model.
    For further verification of the inhibiting capabilities of the hits 
obtained, a ligand library comprising the top 859 compounds was 
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energy of the generated ligand conformation.
    The Gibbs energy of binding between the receptor and ligand 
was predicted using Prime MM/GBSA. MM/GBSA is a method 
that combines OPLS molecular mechanics energies (EMM), surface 
generalized Born solvation model for polar solvation (GSB), and a 
nonpolar solvation term (GNP). The GNP term comprises the nonpolar 
solvent accessible surface area and van der Waals interactions. The 
total Gibbs energy of binding is calculated as:
      ΔGbinding = Gprotein - (Gprotein + Gligand)  
      G = EMM + GSB + GNP

    The QikProp program[37] was used to obtain the absorption, 
distribution, metabolism and excretion (ADME) properties. A total 
of forty-four properties were predicted for 102 molecules with the 
highest Glide-SP scores given in Tables S5-S7 (SI). 

RESULTS AND DISCUSSION
PHARMACOPHORE BASED 3D-QSAR MODEL
A tree-based partitioning algorithm was used, which resulted in 93 
three-featured and 34 four featured probable common pharmacophore 

docked into QM/MM treated PDHK2. First of all, the protein 
structure was refined using the protein preparation workflow. The 
bond orders of the residues were adjusted. The missing loops 
of proteins were filled using the “Fill loops” option of “Protein 
preparation wizard”. The pre co-crystallized water molecules beyond 
5 Å of the active site were removed and hydrogen atoms were added 
to the structures. The protein structures were first optimized using 
a molecular mechanics calculation using the OPLS-2005 force-
field[36]. Minimizations were performed until the average root mean 
square deviation (RMSD) of the non-hydrogen atoms reached 0.3 Å. 
Additional states for the inhibitors within the proteins were generated 
(using “Generate Het States”) and the most appropriate states for all 
the ligands were selected. The refinement of the side chains was done 
using “Prime side chain refinement” option. We have applied QM on 
the active site and MM on rest of the prepared protein using QSite. 
The ligand and the active site residues were treated using density 
functional theory (DFT), and the rest of the protein was treated by the 
OPLS-2005 force-field. The B3LYP/LACVP* basis set was used to 
treat the active site residues. LACVP* employs the 6-31G* basis set 
for non-transition elements in the active site.
    After ensuring that the protein and ligands were in the correct 
form for docking, the receptor-grid files were generated using a grid-
receptor generation program. To soften the potential for the nonpolar 
parts of the receptor, we scaled the van der Waals radii of receptor 
atoms by 1.00 with a partial atomic charge of 0.25. A grid box of 
size 56×56×56 Å3 with coordinates X = 56.09 Å, Y = 62.66 Å and 
Z = 78.55 Å was generated at the centroid of the ligand. The ligands 
were docked into the active site first using Glide-SP (Glide “Standard 
Precision”) and then Glide-XP (Glide “Extra Precision”) for the top 
100 Glide-SP scorers. The OPLS-2005 force field was used for this 
purpose. The choice of the best docked structure for each ligand was 
made using the model energy score (Emodel) that combines the Glide 
score, the nonbonded interaction energy and the excess internal 
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Hypothesis
AHH.1
AHH.2
DHH.2
DHH.4
HHR.7
DHH.5
HHR.5
DHH.6
AHH.3
HHR.6
HHR.8

Survival score
3.695
3.692
3.674
3.644
3.588
3.577
3.571
3.569
3.521
3.497
3.251

Table 1 Survival and “Survival-inactive” scores of some selected three-
featured hypotheses.

Survival-inactive score
3.370
3.373
3.357
3.325
3.262
3.262
3.249
3.248
3.268
3.180
3.000

Hypothesis
AHH.1
AHH.2
DHH.2
DHH.4

Table 2 Atom-based QSAR statistics for three-featured hypotheses.
SD*
0.2158
0.2011
0.1600
0.2397

R2

0.9410
0.9348
0.9615
0.9060

F
35.90
50.20
68.60
29.00

p
1.54×10-5
3.77×10-8
1.05×10-7
4.38×10-6

RMSE#

0.3373
0.3004
0.3773
0.4215

Q2

0.6198
0.6170
0.6130
0.5850

Pearson-R
0.8468
0.9401
0.7976
0.8182

*Standard Deviation #Root Mean Square Error

Figure 1 The correlation plots for the experimental activity versus the predicted activity for AHH.2 applied to the (a) training set (b) test set ligands.



hypotheses (CPHs). No CPH was generated for five- and six- 
featured hypotheses. Amongst these, only 69 three-featured and 19 
four-featured CPHs survived the scoring process. We developed the 
QSAR model for all the three- and four-featured hypotheses which 
survived the scoring process and analyzed them.
    The statistics for the four-featured CPHs was found to be 
unsatisfactory, as there was found a huge mismatch between the 
R2 (regression with the training set molecule) and Q2 (regression 
coefficient for the test set molecules) values, which clearly indicates 
that the developed QSAR model is not acceptable for further 
study[22,23]. Also, the Pearson-R values (correlation between the 
predicted and observed activity for the test set) of three-featured 
CPHs were found to be higher as compared to those for the four-
featured CPHs. Keeping all these observations in mind, we restricted 
ourselves to the pharmacophore model and 3D-QSAR for three-
featured CPHs only. Out of the 93 three-featured variants that 
survived the scoring process, the CPHs having appreciable survival 
scores belong to three categories: AHH, DHH and HHR. The eleven 
CPHs belonging to these three categories, arranged in the order of 
decreasing values of their survival score, are given in Table 1.
    A good hypothesis is one that has high active features and low 
inactive features. As the survival and survival-inactive scores are all 
in the range of 3-4, the QSAR model was developed for the top ten 
hypotheses (Table S5, SI). This selection is based on the criterion of 
their high survival as well as “survival-inactive” scores. 
To select the best hypothesis amongst these, the statistical analysis 
of all the fifty molecules was carried out for the top four hypotheses. 
The training and test sets were decided on the basis of K-means 
clustering method. The training set comprised 32 molecules (64%) 
and the remaining 18 (36%) molecules formed the test set.
    The statistics obtained using cluster analysis (Table 2) point 
towards AHH.2 as the best of all hypotheses, having appreciably high 
value of R2 (>0.6), Q2 (>0.5), Pearson-R (>0.5) and high F (Table 2). 
In fact, it has the highest value of Pearson-R. Its p-value is the least. 
The other hypotheses which performed well are DHH.4, AHH.1 and 
DHH.2. The plots of the statistical data for the training (Figure 1(a)) 
and test (Figure 1(b)) sets are linear, with appreciably high regression 
coefficients, good enough to be accepted for a valid pharmacophore 
model.

AHH.2-THE PHARMACOPHORE MODEL
The AHH.2 pharmacophore model is shown in Figure 2. It features 
a hydrogen bond acceptor (A2), having two lone pairs, and two 
hydrophobic sites (H4 and H5).
    On superimposing all the molecules on our proposed model, a 
good overlap between the molecules and the pharmacophore model 
was obtained (Figure 3). The basic moiety (9-(trifluoromethyl)-9H-
fluorin-9-ol) is the same in all the molecules. The presence of –OH 
and –CF3 groups in this moiety indicates the existence of A (acceptor) 
and H (hydrophobic) features respectively. Another hydrophobic 
feature (H) comes from the presence of alkyl and other hydrophobic 
groups in these molecules.
    The ligands showing the best and least fitness scores to our 
model, i.e. ligands C36 and C47, respectively, were selected and 
then subjected to analysis for finding the favorable and unfavorable 
sites for substitution (Figure 4). It can be seen that the best fit ligand 
C36 has its acceptor group (-OH) and hydrophobic group (–CF3)
perfectly aligned with our model, AHH.2. The second hydrophobic 
group is provided by –Cl. In the worst fit ligand, there is an -OCH3 
group at this hydrophobic site. The middle row of Figure 4 shows 
the favorable (dark green) and unfavorable (purple) sites for the 
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substitution of hydrophobic groups. Clearly, there are many more 
unfavorable sites in C47. In fact, the presence of –OCH3 makes this 
site unfavorable, in contradiction to our model, which requires a 
hydrophobic group at this position. In case of electron withdrawing 
group substitution, ligand C36 (Figure 4, bottom left) shows the 
region in the form of orange cubes where substitution of electron 
withdrawing groups possibly enhances the inhibiting activity.
    Using these guidelines, we inserted hydrophobic groups at their 
preferred site in C36 in order to enhance its activity, and similarly we 
attached electron withdrawing substituents at the pyridine nitrogen 
position. The result is gratifying in the sense that there is remarkable 
improvement in the Glide scores from -5.32 for C36 to a maximum 
value of -7.29 for two compounds, F32 and S24 (Table S6). However, 
there is only a marginal improvement in the Glide Score, as C16, 
the highest Glide Scorer in the original compounds, already had 
scored -7.23 (Table S1). The top 10 hydrophobic substituents (Table 
S7) are arylalkyl halides with F or Cl, except one compound, which 
contains Br. We then attached electron-withdrawing substituents at 

Figure 2 Model AHH.2 representing features, distances (in Å) and angles 
(in °) between them. Acceptor “A2” is represented as a light red sphere with 
the lone pair vectors; hydrophobic sites “H4” and “H5” are represented by 
light green spheres.

Figure 3 Alignment of all the ligands on AHH.2 showing good overlap of 
all the ligands on the same features.
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the suggested position, but this did not have such a profound effect, 
only four compounds doing better than the parent compound (Table 
S8). The highest Glide score is -6.11 for –OH substitution (Tables S8 
and S9). The results show that hydrophobic substitution has a more 
profound effect than electron-withdrawing group substitution.
    We then combined the four high scoring electron withdrawing 
substituents with the 69 high scoring hydrophobic groups which 
had better scores than C36 to obtain 276 compounds. For these 
compounds, we again computed the Glide scores and Gibbs binding 
energies (Table S10). A huge enhancement in the Glide Score to 
-9.76 is obtained for the best scoring compound. The top twenty 
molecules have Glide Scores above -8.25. Their Emodelvalues 
are also impressive. The structures of the top 15 Glide-XP scorers 

are displayed in Table S11. The top Glide-XP scorer L1 contains 
hydrophobic group F40 (Table S6) and electron withdrawing 
group E2 (Table S8). F40 is an arylalkyl group ((1,1-difluoro-2-
methylpropan-2-yl)benzene) and the E2 group is an aldehyde group 
(propanal).
    To further calculate their fitness to the pharmacophore model, 
the ligands obtained after hydrophobic and electron withdrawing 
substitution were screened through the pharmacophore model 
AHH.2. The fitness scores of hits obtained are reported in Table S11. 
    These 276 compounds were then subjected to calculation of their 
ADME properties using QikProp. Out of these, 37 compounds 
failed. The ADME properties and descriptors of the remaining 239 
compounds are given in Tables S12 and S13. One can see that all 

Figure 4 The favorable and unfavorable regions for H-bond donors (top), hydrophobic (middle) and electron withdrawing groups (bottom) for the best fit 
ligand C36 (left) and the worst fit ligand C47 (right).
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    From the analysis of the top ten Glide-XP scorers, it can be clearly 
seen that the top five positions in the scoring process are taken up by 
different conformers of the same compound ‘Doxifluridine’, which 
show the best Glide Scores, which improve to more than -10 and fitness 
score ≥ 1.5 (Table 6). The ligand has fluorine substitution, which 
enhances its chances of hydrogen bond formation with the residues in 
the protein binding site, which is very essential for the stability of the 
protein-ligand complex. From all respects, the various conformers of 
doxifluridene, with Glide scores way above the rest, appear to be the 
best candidates. Another suitable candidate is Z9, which has the highest 
value of Emodel (Table 6), which is a combination of Glide score, the 
non-bonded interaction energies and the excess internal energy of the 
conformer. Z9 also has the best value of Glide Energy.
    The ligand Z1 (doxifluridine), as shown in Figure 5, forms three 
hydrogen bonds with the receptor protein, one between the −C=O 
group of the ligand and a water molecule trapped inside the protein 
cavity. The second hydrogen bond is formed between the -OH 
group present at one end of the ligand and Leu160, and the third 
between the -NH present in the ring at the other end of the ligand and 
Gln27. Ligands Z2, Z3, Z4 and Z5 also show good docking results. 
They all are conformers of doxifluridine; hence, they are also good 
binders to the protein. The major part of the ligand is embedded in 
the hydrophobic region of the binding cavity of the protein, which 
shows that the ligand also has a hydrophobic part, which is helpful 
in the binding of the ligand to the protein, as predicted by our 
pharmacophore model, AHH.2.
    It has already been reported that the binding site of PDHK2 is 
hydrophobic in nature[11] and the same was observed from our site 
map calculations, performed using Qsite. The hydrophobic part of 
the PDHK2 binding site has been displayed in orange color in Figure 
5 (right). The ligand Z1 is totally surrounded by the hydrophobic 
surface, and forms three hydrogen bonds with the receptor residues.
    Ligand Z9 forms one hydrogen bond with the residue Gln27 and 
does not completely lie inside the protein (Figure6) like other small 
ligands, but partially peeps out of the cavity. However, the part 
which is responsible for binding is completely embedded inside the 
hydrophobic region. All these observations point towards the fact that 
hydrophobicity is an important criterion for the ligand to bind firmly 
to the binding site of PDHK2 

the compounds violate at least one of Lipinski’s rules which define 
the drug likelihood of a compound to be orally active. Inclusion of 
both hydrophobic and electron withdrawing groups increases the 
molecular weight to above 500, violating one of the conditions for 
the drug likelihood of a compound. The other rule that is violated 
by all these compounds is that the logPo/w should be lower than 5. 
Introducing another hydrophobic group increases the lipophicity to 
more than the required value. Ideally a drug should have a balance 
between its solubility in nonpolar solvents like 1-octanol (so that it 
can pass through cell membranes, which consist of a phospholipid 
bilayer, into cells) and in water (so that it can be transported around 
the body through the bloodstream). Clearly, these molecules do not 
satisfy the latter criterion.
    Though one violation of Lipinski’s rules is acceptable, we decided 
to go for a search for known drugs that fit our pharmacophore model 
and have suitable ADME properties. Moreover, we would like higher 
Glide scores and hence we performed virtual screening to explore the 
possibility.

VIRTUAL SCREENING
The main aim of virtual screening is to propose new and potent 
inhibitors from a library of already recognized drugs. The two 
key features for a ligand to be a good inhibitor are its fitness to 
the pharmacophore model and its binding affinity with the protein 
binding site. Our model AHH.2 showed satisfactory internal (R2 = 
0.935) and external predictivity (Q2 = 0.617), which implies that we 
can screen a library of known and commercially available drugs to 
find more potent and novel PDHK inhibitors. 
    In order to find the hits, a library of 37,594 molecules was first 
generated and then screened using the pharmacophore model AHH.2. 
1263 compounds in all were obtained as hits. The maximum value of 
their fitness score is 2.31 (77% match with ligand C36) whereas the 
lowest fitness score value is 0.13 (4% match). Table 3 analyses the 
distribution of ligands in the various fitness score ranges.
    From Table 3, it is clear that out of the 1263 molecules, 991 (79%) 
show fitness scores above 1.5, i.e. 79% of the total molecules show 
more than 50% match to our pharmacophore model. This further 
validates the quality of our model AHH.2.

GLIDE DOCKING
After screening these compounds via model AHH.2, the next step 
was their docking to the protein binding site. Glide-SP (Glide 
“Standard Precision”) docking of the 1263 molecules was performed 
on the QM/MM treated PDHK2. The docking scores comprise van 
der Waals, coulombic and hydrophobic interactions, and so docking 
is an effective technique to further defend the acceptability of 
pharmacophore model fitted molecules. Fitness with the model alone 
is not sufficient to ensure good inhibition of kinase proteins.
    From the Glide-SP scores, it was observed that not all the 
molecules with good fitness scores exhibit good binding with 
PDHK2. The Glide-SP docked ligands falling in different ranges of 
their docking scores are displayed in Table 4. The number of ligands 
having fitness scores ≥ 1.5 falling in a particular range of docking 
scores is also mentioned there. The maximum value of the Glide-SP 
docking score is -8.99 and the lowest is -0.89.
    The top 102 (with FS > 1.5) ligands were selected for Glide-XP 
docking. All these ligands have their Glide-SP docking score in the 
range of -8.99 to -7.00. The complete data for Glide-XP docking of 
these 102 ligands is given in Table S14 (SI). The structures of the top 
ten scorers of Glide-XP docking are given in Table 5, along with their 
docking scores. 

Fitness Score (F.S.) Range
0.0 ≤ F.S. ≤ 0.50
0.50 ≤ F.S. ≤ 1.00
1.0 ≤ F.S. ≤ 1.50
1.5 ≤ F.S. ≤ 2.00
2.00 ≤ F.S. ≤ 2.5

Table 3 Analysis of the distribution of ligands according to their fitness 
scores.

No. of Ligands
14
31
227
858
133
1263

Glide-SP Score
(GS)
-9.00 < GS ≤ -8.00
-8.00 < GS ≤ -7.00
-7.00 < GS ≤ -6.00
-6.00 < GS ≤ -5.00
-5.00 < GS ≤ -4.00
-4.00 < GS ≤ -3.00
-3.00 < GS ≤ -2.00
-2.00 < GS ≤ -1.00
-1.00 < GS ≤ 0.00

No. of Ligands

18
99
454
489
160
30
07
03
01
1261*

Table 4 Analysis of the distribution of ligands according to their Glide-
SP scores, and the number of molecules with fitness scores ≥ 1.50 for each 
range of Glide score.

No. of Ligands
with fitness score ≥ 1.5
17
83
345
376
138
26
06
00
00
991
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Ligand No.

Z1

Z2

Z3

Z4

Z5

Z6

Z7

Z8

Z9

Z10

Table 5 Top ten Glide-XP scorers, along with their popular names, structures and total charge (Q).
Title

ZINC03830726

ZINC03830727

ZINC03830725

ZINC03830725

ZINC03830726

ZINC17747847

ZINC13545636

ZINC03876069

ZINC05844788

ZINC03876069

Common Name

Doxifluridine

Doxifluridine

Doxifluridine

Doxifluridine

Doxifluridine

Thiamylal sodium

Pentobarbital

Methohexital

Nebivolol

Methohexital

Structure Glide Score

-10.42

-10.38

-10.30

-10.10

-10.02

-9.77

-9.69

-9.58

-9.55

-9.55

Q

0

0

0

0

0

-1

0

0

1

0
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ADME SCREENING
The ADME properties were calculated for the Glide-XP docked top 
102 ligands. This was done using the QikProp module of Schrodinger 
Inc. A total of forty-four properties were calculated for all the 102 
ligands and analyzed to check whether they fall in the acceptable 
range (Tables S15 - S17, SI) for drugs. 
    It is observed that none of these shows violation of Lipinski’s 
rules. The top ten ligands reported here (Table 7) have their 
molecular weights in the range 200 - 424 g mol-1, which is within 
the 130-725 range of most drug molecules. Polarizability (Polrz) is 
also within the range (13 – 70 Å3) of most drugs, but Z9 has a value 

close to the middle of the range. The values of logPC16 and logPoct 
are also in the middle of the range for Z9, but are low for the others. 
The water/gas partition coefficient (logPw) for all the molecules is in 
the low side of the acceptable range (4–45). The aqueous solubility 
(logS) and conformation-independent predicted aqueous solubility 
(CIlogS) are within the acceptable ranges for most drugs, implying 
smooth distribution of the drugs in the body. The computed logPo/
w values are a measure of the lipophilicity of a molecule, and these 
are frequently used to estimate the membrane permeability and the 
bioavailability of compounds. Z1 is slightly hydrophilic, but Z9 is 
lipophilic.

L
Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9
Z10

Table 6 Glide-XP docking data* for the top 10 virtually screened drug molecules.
FS
1.72
1.65
2.01
2.01
1.72
2.05
2.15
1.72
1.97
1.73

GS
-10.42
-10.38
-10.30
-10.10
-10.02
-9.77
-9.69
-9.58
-9.55
-9.55

Emodel

-58.71
-52.79
-54.49
-51.58
-59.23
-36.74
-44.30
-47.06
-64.87
-47.58

Evdw

-32.25
-25.60
-31.33
-28.28
-32.13
-22.60
-27.26
-28.54
-33.37
-28.34

Ecoul

-7.56
-9.85
-8.32
-8.38
-7.60
-6.67
-5.78
-6.05
-10.25
-6.43

GE
-39.81
-35.45
-39.65
-36.66
-39.73
-29.28
-33.04
-34.59
-43.62
-34.77

Einternal

1.70
7.13
2.64
2.49
1.40
13.45
5.86
5.53
7.61
4.40

*Emodeland Einternalare in kcal mol-1; FS = Fitness Score; GE = Glide Energy

hbond
-0.48
-0.50
-0.45
-0.44
-0.49
-0.61
-0.32
-0.61
0.00
-0.61

Lipo
-1.74
-1.49
-1.74
-1.73
-1.74
-2.04
-2.02
-2.27
-2.92
-2.25

Figure 5 Ligand Z1 shown in green color within the PDHK active site forming three hydrogen bonds with the residues Leu160, Gln27 and H2O (left) and 
the binding hydrophobic region of the protein containing ligand is shown in orange color surface (right).

Figure 6 Ligand Z9 (orange color) in the binding site of PDHK2, forming one hydrogen bond with the receptor (left), the hydrophobic region of the protein 
containing ligand Z9.



    In Table 8, the logHERG values are presented. These represent the 
predicted IC50 values for blockage of HERG K+ channels. Values below 
-5 are of concern, and Z9 is automatically rejected. Caco-2 cells are a 
model for the gut-blood barrier and higher values (> 500 nm s-1) signify 
good penetration. The log BB values, which represent the brain/ blood 
partition coefficients, are also within the acceptable range for 95% of 
known drugs (-3.0 – 1.2). MDCK cells are good mimics for the blood 
brain barrier and higher MDCK values (> 500 nm s-1) are considered 
good. Here Z9 fits the bill, but values below 25 are considered poor; 
hence, Z1 is also acceptable. Skin permeability (logKp) is also within 
the acceptable range (-8 - -1). Similarly, logKhsa, prediction of binding 
to human serum albumin, donor HB and accptHB are all within the 
acceptable ranges. The PSA values, which represent the van der Waals 
surface area of polar nitrogen and oxygen atoms and carbonyl carbon 
atoms, are also within the acceptable range (7 – 200). 
    We conclude that Z1 is a suitable candidate for further study. There 
are three metabolic reactions for Z1 and hence this molecule passes 
all tests.

REGRESSION ANALYSIS
In virtual screening, the major challenge is to decide the scoring 

parameters to rank the inhibiting ability of different ligands towards 
a protein. Hence, the various scoring functions, viz. Glide score, 
Emodel, Glide energy, and Prime MM/GBSA Gibbs energy of binding 
were analyzed in order to see which of them can best explain the 
biological activity of the ligands. The biological activity of any 
molecule can be directly correlated to its structural parameters 
and the scoring function that shows optimum correlation with the 
ligand structure parameters can also be the best way to describe 
its biological activity. The top 102 ligands obtained after Glide-
XP docking were subjected to the Prime MM/GBSA minimization 
procedure, and the Gibbs energy of binding ΔG1

bind(kcal mol-1) was 
generated (Table S18). In Table 9, the Pearson correlation matrix is 
shown, correlating various scoring parameters for the top 102 Glide-
XP docked ligands.
    From the data in Table 9, we observe that the Glide energy and 
Emodel are highly correlated, and any one of them can be selected. The 
Pearson’s correlation coefficients for others are insignificant, which 
means Glide score, Emodel, and Prime MM/GBSA are not interrelated 
and can be individually explored to find out that which one best 
describes the biological activity. The three scoring functions were 
then tested for their dependence on ligand based descriptors.
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L
Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9
Z10

Table 7 Predicted ADME properties of the compounds.
Mol.Wt.
246.20
246.20
246.20
246.20
246.20
254.35
226.28
262.31
405.44
262.31

Polrz
21.06
21.09
20.27
20.27
21.06
25.48
20.92
27.00
41.81
27.00

logPC16
6.91
6.98
6.82
6.82
6.91
8.28
6.97
7.80
12.52
7.80

logPoct
16.83
17.03
16.61
16.61
16.83
13.20
12.23
12.24
20.98
12.24

logPw
14.75
14.79
14.62
14.62
14.75
7.19
7.58
6.22
12.75
6.22

logPo/w
-0.86
-0.94
-0.90
-0.90
-0.86
3.27
2.05
2.92
3.79
2.92

logs
-1.94
-1.95
-1.77
-1.77
-1.94
-3.62
-2.42
-3.47
-4.57
-3.47

CIlogS
-1.58
-1.58
-1.58
-1.58
-1.58
-3.21
-2.52
-3.25
-4.53
-3.25

HERG
-3.24
-3.21
-2.87
-2.87
-3.24
-1.94
-2.38
-3.86
-6.82
-3.86

Table 8 Descriptors calculated for top ten ligand states by QikProp simulation.
Caco
109.69
84.21
119.22
119.22
109.69
256.90
617.11
1388.36
408.49
1388.36

logBB
-1.14
-1.24
-1.04
-1.04
-1.14
-0.45
-0.62
-0.53
-0.16
-0.53

MDCK
79.63
59.90
87.05
87.05
79.63
399.66
293.60
705.31
680.49
705.31

logKp
-5.05
-5.29
-5.00
-5.00
-5.05
-2.83
-3.48
-2.52
-3.40
-2.52

logKhsa
-0.75
-0.75
-0.74
-0.74
-0.75
-0.13
-0.25
0.09
0.36
0.09

QP%
58.42
55.90
58.85
58.85
58.42
89.21
88.88
100.00
95.85
100.00

PSA
123.42
123.69
119.30
119.30
123.42
77.95
96.72
85.35
67.00
85.35

donorHB
3.00
3.00
3.00
3.00
3.00
2.00
2.00
1.00
3.00
1.00

accptHB
8.60
8.60
8.60
8.60
8.60
3.50
4.00
4.00
6.40
4.00

metab
3
3
3
3
3
1
0
3
5
3

ΔG1bind
Glide score
Emodel
Glide energy

Table 9 Pearson correlation matrix for the various scoring functions in Schrödinger.
ΔG1bind
1
-0.020
-0.008
0.026

Glide score

1
0.036
0.026

Emodel

1
0.960

Glide energy

1

L
Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9
Z10

Table 10 Descriptors calculated for top ten ligand states by QikProp simulation.
CNS
-2
-2
-2
-2
-2
-1
0
0
0
0

WPSA
44.58
44.66
44.50
44.50
44.58
80.48
0.00
0.00
93.99
0.00

glob
0.90
0.90
0.92
0.92
0.90
0.87
0.95
0.87
0.80
0.87

FOSA
151.31
145.29
146.70
146.70
151.31
278.79
290.63
376.25
270.14
376.25

PISA
23.56
18.05
15.43
15.43
23.56
37.27
0.00
50.05
263.71
50.05
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Figure 7  Residual plots for Prime-MM/GBSA Gibbs energy of binding ΔG1
bind (kcal mol-1).

Figure 8 Partial Least Square response plot for Prime-MM/GBSA Gibbs energy of binding ΔG1
bind (kcal mol-1).
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L

Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9
Z10

Table 11 Prime-MM/GBSA energy of binding (kcal mol-1) for ligand binding to the receptor.

Title

ZINC03830726
ZINC03830727
ZINC03830725
ZINC03830725
ZINC03830726
ZINC17747847
ZINC13545636
ZINC03876069
ZINC05844788
ZINC03876069

Prime-MM/GBSA 
ΔG2

bind

-32.55
-31.75
-31.08
-33.68
-32.13
-16.14
-30.84
-38.73
-39.65
-38.68

Lstrain

3.11
5.00
7.47
13.39
3.00
16.14
1.57
10.30
8.32
12.37

Prime-MM/GBSA
ΔG1

bind

-29.44
-26.75
-23.61
-20.29
-29.13
0.00
-29.27
-28.44
-31.33
-26.30

Ligand
Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9
Z10

Predicted pIC50 according to QSAR model AHH.2
5.31
4.99
5.58
5.58
5.31
4.77
4.81
4.73
5.33
4.68

Table 12 Predicted pIC50 (µM) of the top ten Glide-scorers for PDHK 
inhibition.

All the descriptors calculated via QikProp were considered. The 
correlation coefficients were calculated for all the descriptors to see 
their mutual interrelation with each other. If any of the descriptors 
were found to be strongly inter-correlated (correlation coefficient ≥ 
0.9), only one of them was retained. FISA is correlated to PSA and 
logBB with correlation coefficients 0.905 and -0.923, respectively. 
LogPC16 is correlated to polrz and logCoct with correlation 
coefficients 0.963 and 0.903; polrz is also very closely correlated to 
SASA with correlation coefficient 0.988 and logPw is correlated to 
accptHB with a correlation coefficient 0.925. Hence, some of these 
parameters were dropped from the regression analysis.
    Stepwise regression analysis for the scoring functions ΔG1

bind, 
Glide-XP score and Emodel was performed to see their dependence 
on the descriptors. The regression coefficients obtained for ΔG1

bind, 
Glide-XP score and Emodel were 0.528, 0.328 and 0.732 respectively. 
Though the regression coefficient is the highest for Emodel, the p value 
for this correlation is > 0.05 which is considered to be statistically 
insignificant. Hence we considered ΔG1

bind for further calculations. 
The Prime-MM/GBSA Gibbs energy of binding is thus the best 
function that can be related to the structures of ligands and ADME 
properties. It has been shown in our previous studies too that 
the biological activity of protein-ligand complexes can be better 
explained by the Prime-MM/GBSA energy of binding [38].
The regression equation obtained is:

ΔG1
bind = -225 - 4.56 donorHB + 7.60 logPC16 - 6.88 CNS + 0.250 

WPSA -6.55 accptHB + 208 glob – 14.0 logPo/w + 0.0964 FOSA - 
1.75 logPw  + 0.0777 PISA    (1)

    From equation (1), it is very clear that the regression equation 
obtained for Prime-MM/GBSA contains both structure-based 
properties and ADME properties. The highest coefficient is for 
the globularity, which correlates positively with the Gibbs energy 
of binding. The globularity descriptor is defined as Glob = (4πr2)/
Smol, where r is the radius of the sphere whose volume is equal to 
the molecular volume. Smaller values indicate larger deviation 
from the spherical shape and better binding (more negative Gibbs 
energy). Hence, size and shape are important factors in determining 
the binding of the ligand, and the more the ligand differs from a 
sphere, the better it can bind. The data for the remaining descriptors 
appearing in equation (1) is presented in Table 10.
    Positive values of the log of the octanol-water partition coefficient 
favor binding, and hence, more lipophilic a ligand, higher is its 
binding affinity. The presence of hydrogen bond donor and acceptor 
terms show how significant these factors are for the binding of a 
drug to the receptor. The coefficients for the hydrogen bond donor 
and acceptor terms are both negative, which indicates that increase 
in these terms makes the ΔG1

bind more negative, i.e. the complex 
becomes more stable. The other terms with reasonably high 

coefficients are logPC16 (hexadecane/gas partition coefficient) and 
logPw (water/gas partition coefficient). These are related to the Henry 
law constants. The positive coefficient of the former and negative of 
the latter imply that the ligand should have high tendency to partition 
from the gas phase to hexadecane and small tendency to partition 
from the gas phase to water, implying that it should be lipophilic. The 
other three terms are small and positive and imply that WPSA (weakly 
polar component of the solvent accessible surface area comprising 
halogens, P and S), FOSA (hydrophobic component of the solvent 
accessible surface area comprising saturated carbon and hydrogens) 
and PISA [π(carbon and attached hydrogen) component of the  
solvent accessible surface area] should be small, but the coefficients 
of the three terms are relatively small.
    The residual plots of the Prime-MM/GBSA Gibbs energy of 
binding ΔG1

bind are displayed in Figure 7 and the partial least square 
with 10 components gives a straight line, as shown in Figure 8.

PRIME-MM/GBSA GIBBS ENERGIES OF BINDING
The regression analysis of the various functions in the previous 
section has shown that the Prime-MM/GBSA binding energy is the 
best way to explain the biological activity of a ligand towards the 
protein. The binding energies ΔG1

bind (with ligand strain energy) and 
ΔG2

bind (without ligand strain energies) are reported in Table 11 for 
the top 10 Glide-XP scorers. The rest of the values for the top 102 
scorers are reported in Table S18 of the Supplementary Information. 
ΔG1bind, obtained by adding the strain energy, seems more 
significant for explaining the ligand binding affinities. In this respect 
too, Z1 scores the best (Table 11) having competition only from 
Z9, which we had already rejected because of its lack of metabolic 
reactions. Moreover, though Z9 shows the strongest binding affinity, 
there is also a higher strain energy (8.32 kcal mol-1), which implies 
that this ligand requires more effort to fit into the binding pocket. 
This reduces the difference in binding energies of Z1 and Z9 to only 
1.9 kcal mol-1.
    The predicted pIC50 values for the hits, obtained from the AHH.2 
model, were calculated using four PLS factors and the pIC50 values 
for the top 10 Glide-XP scorers are reported in Table 12. The 
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inhibitory concentration for 50% inhibition is ~5×10-6μM for both Z1 
and Z9. Though there is no improvement from the original dataset, as 
the inhibitory concentrations remain in the micromolar range, overall 
Z1 appears to be a good candidate for further evaluation. 
    Z1 is doxifluridene (5’-deoxy-5-fluorouridine), a fluoropyrimidine 
derivative. It is an oral prodrug of the antineoplastic agent 
5-fluorouracil (5-FU), which has antitumor activity, but undergoes 
rapid degradation by dihydropyrimidine dehydrogenase in the 
gut wall. Doxifluridineis converted into 5-FU in the presence of 
pyrimidine nucleoside phosphorylase selectively in tumor cells.
Doxifluridine has also been shown to be active against exudative age-
related macular degeneration (AMD), characterized by choroidal 
neovascularization (CNV), which is a major cause of visual loss in 
developed countries[39].
    An interesting observation is that most of the other high Glide 
scorers (Z6, Thiomylal sodium, Z7, pentobarbital, Z8 and Z10, 
methohexital) are barbiturates, used for inducing anesthesia. 
Pentobarbital(Z7) is a barbiturate which slows down the activity of 
the brain and is used for inducing sleep. Nebivolol (Z9) belongs to a 
class of medicines known as β-blockers used to treat hypertension. 
Doxifluridine seems to be the best bet, given that the first five 
positions in the Glide Score are taken up by different conformations 
of this drug. 
    However, a disappointment is that, though we could improve our 
Glide scores considerably, this did not translate into better pIC50 

values. None of the new ligands, whether obtained by hydrophobic 
group and electron-withdrawing substitution or by virtual screening, 
could better the pIC50 values of the parent compounds, though this 
work could identify the factors responsible for better binding.

CONCLUSION
We selected a series of inhibitors belonging to the 9-(trifluoromethyl)-
9H-fluorin-9-ol family to generate a pharmacophore model. The three 
and four featured hypotheses were generated but only three featured 
hypotheses were found to be significant. After deciding the training and 
test sets via Bayes classification, a 3D-QSAR was obtained for each of 
them and the best model was selected on the basis of the internal and 
external data set regression analysis. The best regression turned out to 
be for the AHH.2 model with R2 = 0.935 and Q2 = 0.617. After getting 
an idea about the favorable sites of ligand C36 for various substitutions, 
a combinatorial library of 276 compounds was generated by substituting
hydrophobic and electron withdrawing groups at suitable positions. 
This library was then tested via ADME properties calculations but only 
239 compounds were found suitable on this scale. Glide-XP docking 
and Gibbs binding energy calculations were then performed to see 
their efficacy as inhibitors of PDHK2. Using pharmacophore model 
AHH.2, their expected activity values were also calculated and analyzed 
but no appreciable improvement was seen in the activity of C36 after 
substitution; hence, the alternate was virtual screening of some known 
drugs in order to get better inhibitors with improved activities. Again, 
model AHH.2 was used to virtually screen a library comprising of 2924 
drug molecules which was already available and tested by ZINC (www.
zincdocking.org). Most of the drug molecules in the selected library 
were non-fluorinated. After generating all possible states for the 2924 
molecules at the physiological pH and on applying Lipinski’s filter, 
the final library of 37,594 compounds was obtained. On screening 
this library via model AHH.2, 1263 hits were obtained. These were 
then tested for their binding affinities with the protein using Glide 
docking, Prime-MM/GBSA binding energy calculations and ADME 
properties calculations. The top ten ligands obtained from Glide-XP 

docking were analyzed for their further validation. Out of these ten 
ligands, doxifluridine, pentobarbital and nebivolol were found to have 
the appropriate Emodel, Glide Energy and ADME properties. These three 
ligands proved to be best on the basis of their binding energies ΔG1bind 
as well. The predicted IC50 values were also in the acceptable range 
for the three. However, only doxifluridine passed all tests, including 
a number of metabolic reactions for its excretion. We conclude that a 
variety of novel drugs that are non-toxic and easily available can be 
identified by this method before taking them for wet lab proceedings.
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