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ABSTRACT
Bone remodeling is a physiological process determined by the 
sequential and coordinated interaction involving osteocytes, 
osteoclasts and osteoblasts, as well as inflammatory cells and 
mediators. This balance between osteoblastic bone formation and 
osteoclastic resorption is disrupted during chronic inflammation, 
leading to local and systemic changes in bone architecture and quality. 
In this review, the influence of chronic inflammation is explored 
during physiological bone remodeling and during a set of four 
chronic inflammatory associated pathologies: rheumatoid arthritis, 
spondylarthropathies, periodontitis, and postmenopausal osteoporosis.
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INTRODUCTION
Bone is a dynamic tissue that undergoes continual adaption to 
reach and preserve skeletal size, shape, and structural integrity 
and to regulate mineral homeostasis. At first, bone modeling is 
responsible for bone formation, growth and adaption to mechanical 
loads. Then, bone remodeling is responsible for removal and repair 
of damaged bone to maintain integrity of the adult skeleton and 
mineral homeostasis. This tightly coordinated event requires the 
synchronized activities of multiple cellular participants carried out by 
osteoblasts and osteoclasts, which respectively produce bone matrix 
and resorb it. Endocrine and paracrine control of these cells can 
be direct, but they are also exerted indirectly, either by influencing 
progenitor cell differentiation or by stimulating paracrine signals 
from local accessory cells including osteocytes, macrophages and 
T lymphocytes. Chronic inflammation is known for long to disrupt 
the balance of cell activities between osteoblasts and osteoclasts, 
producing both local and systemic changes in bone quality in 
chronic inflammatory conditions, including rheumatoid arthritis 
(RA), spondylarthropathies (ankylosing spondylitis, psoriatic 
arthritis, and inflammatory bowel disease), periodontal diseases, and 
even postmenopausal osteoporosis. However, if immune cells and 
inflammatory cytokines mediate bone catabolism, they also play pro-
anabolic functions, indicating rich cross-regulations between the 
immune and skeletal systems.

PHYSIOLOGICAL AND PATHOLOGICAL BONE 
REMODELING CELLULAR PARTICIPANTS
The first phase of the bone remodeling process, the activation phase, 
involves the perception of an initiating remodeling signal that can 
take several modalities. Direct mechanical strains can be sensed by 
osteocytes and then transduced into a biological signal that initiates 
the bone remodeling process. Osteocyte apoptosis during bone matrix 
damage or immobilization can locally remove the osteoclastogenesis 
inhibition of TGF-β basally released by osteocytes, thus initiating 
bone removal. During the resorption phase, release of the endocrine 
calciotropic hormone (PTH), secreted by the parathyroid glands in 
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response to reduced serum calcium, acts on osteoblasts to induce 
the release of the chemokine MCP-1 (monocyte chemoattractant 
protein-1) that induces the osteoclast recruitment, differentiation 
and activation, and thus establishes bone resorption. Reversal phase 
is then characterized by the removal of the collagen remnants 
by mononuclear reversal cells (either monocytic phagocytes or 
osteomacs/osteoblastic-lineage related cells), which prepares the 
bone surface for subsequent osteoblast-mediated bone formation. 
During the formation phase, coupling molecules and factors (e.g. 
TGF-β, Insulin-like growth factors I and II), initially stored in the 
bone matrix and subsequently released during bone resorption, as 
well as osteoclast-released factors (e.g. sphingosine-1-phosphate, 
cell-anchored ephrin-B4) may then act as key signal for the 
recruitment of mesenchymal stem cells to sites of bone resorption. 
These progenitors then differentiate into osteoblasts that secrete the 
organic part of the replacing bone matrix, composed of collagen type 
I and non-collagenous proteins (proteoglycans, glycosylated proteins: 
alkaline phosphatase, small integrin-binding ligand proteins, matrix 
Gla protein and osteocalcin; and lipids). Hydroxyapatite is finally 
incorporated into this newly deposited osteoid matrix. Ultimately, 
the termination phase is achieved when an equal quantity of resorbed 
bone has been replaced by newly formed bone and the resting bone 
surface environment is reestablished. Following mineralization, 
mature osteoblasts involved in this remodeling process undergo 
apoptosis, return to a bone-lining phenotype or become embedded in 
the newly mineralized matrix and differentiate into osteocytes. 
    Bone remodeling is thus performed over several weeks by clusters 
of bone-resorbing osteoclasts and bone-forming osteoblasts arranged 
within temporary anatomical structures known as “basic multicellular 
units” (BMUs) that form with human bone-lining cells (or rodent 
osteomac cells) the canopy microenvironment[1]. 
    Among these cells, osteoclasts are multinuclear, terminally 
differentiated myeloid cells expressing tartrate-resistant acid 
phosphatase and the calcitonin receptor and are uniquely adapted 
to remove mineralized bone matrix[2]. The survival, expansion and 
differentiation of osteoclast precursors require CSF-1 (colony-
stimulating factor 1 factor) and RANKL (receptor activator of NF-κB 
ligand) in vitro[3] as well as in vivo since the lack of function of either 
CSF-1 or RANKL results in osteopetrosis (dense bones) caused by 
complete absence of osteoclasts[4-5]. At the opposite, loss of functional 
OPG (osteoprotegerin, a receptor for RANKL that is a physiological 
negative regulator of osteoclastogenesis) results in mice with 
osteoporosis (brittle bones) due to excessive osteoclastogenesis[6], 
indicating that the RANKL/OPG expression ratio determines the 
degree of osteoclast differentiation and function.
    Osteoblastic cells represent a population of pluripotent 
mesenchymal stem-derived, specialized bone-forming cells 
expressing PTH receptors that comprises several cells, including 
immature osteoblast cells that act on osteoclastogenesis as well as 
differentiating and mature matrix-releasing osteoblasts[7-8]. 
    During bone formation, few osteoblasts undergo terminal 
differentiation to become embedded into a non-mineralized osteoid 
matrix. These osteoid-osteocytes are finally called osteocytes when 
entombed during the mineralization of this organic matrix[9]. Whereas 
osteoblasts and osteoclasts have a lifespan of few days or weeks, 
osteocytes are able to live several decades within the bone matrix 
and are the most abundant cells in bone, representing 90 to 95% 
of all cells in the adult skeleton[10]. These cells emit long dendritic 
expansions (the dendrites) through fine channels within the bone 
matrix (the canaliculae), thus forming a large dendritic network 
bathed into an interstitial fluid (the bone fluid flow) and connecting 
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these cells with each other and with osteoblasts, lining cells and 
osteoclasts[11]. Osteocytes are able to sense and respond to mechanical 
loads to initiate and direct the bone remodeling process[12]. 
    Next to these three “classical” bone cell types, other immune 
cells are also involved in the physiological bone remodeling 
process. B-cells and activated T-cells have been implicated in the 
maintenance of bone homeostasis during basal physiology since 
mice lacking either B- or T-cells have osteoporotic bones[13]. With 
half the production of the osteoclastogenesis down-regulator 
OPG coming from mature B-cells, the role of this immune cell in 
physiological bone remodeling is obvious. However, the role of 
the few activated T-cells that can be found in the vicinity of bone 
is less clear and could pass through an enhancement of B-cell 
OPG production via a CD40/CD40L co-stimulation. Mice having 
increased megakaryocyte numbers, the thrombocyte-producing 
hematopoietic stem cell, exhibit elevated bone volume[14]. At last, 
osteomacs represent a population of resident tissue macrophages that 
are anatomically localized in close proximity to the bone surface. 
These cells are forming a canopy over mature matrix-producing 
osteoblasts at sites of bone (re)modeling and are may be required to 
maintain osteoblasts in a mature state[1].

INFLAMMATION, PATHOLOGIES AND DISTURBED 
BONE REMODELING
Multiple anatomical and vascular contacts and overlapping and 
interacting cellular and molecular mechanisms are involved in the 
regulation of bone turnover and the immune system. Furthermore, 
patients with diseases of excessive immune activation such as 
RA, spondylarthropathies, or periodontal diseases, are at higher 
risk of experiencing concomitant osteoporosis. There is therefore 
accumulating evidence that chronic immune activation itself is an 
independent risk factor for progressive bone loss (Figure 1)[15].
    Rheumatoid arthritis (RA) is a set of chronic inflammatory 
autoimmune diseases of unknown etiology affecting approximately 1 
to 10% of the population depending on the country[16]. Inflammation 
of the synovial membrane leads to a pannus and subsequent 
painful cartilage and bone destruction of joints. In addition, RA is 
characterized by systemic inflammation and it is recognized that 
mortality in RA patients is increased[17] mainly due to increased 
cardiovascular risk[18] and probably interstitial lung disease[19]. RA is 
also characterized by generalized bone loss and increased fracture 
risk mediated by the systemic pro-inflammatory state, chronic use 
of glucocorticoid or biotherapies and a decreased level of physical 
activity[20]. RAs are categorized according to presence of anti-cyclic 
citrullinated peptides antibodies (ACPAs). Sixty percent of RA 
patients exhibit high quantity of ACPAs, which are highly specific 
of RA[21] and may be relevant for the prognosis of RA[22]. Indeed, 
ACPAs promote osteoclast precursor cells differentiation into 
bone-resorbing osteoclasts[23]. The use of biotherapies, especially 
monoclonal anti-TNFα antibody, has considerably improved RA 
treatment, sustaining the role of inflammation in RA pathogenesis. 
High levels of inflammatory cytokines, including IL-1, IL-6, IL-
17 and TNF-α, and increased RANKL/OPG are common features 
of RA. Interestingly, in RA patients treated with TNF antagonists, 
low levels of serum RANKL and RANKL/OPG ratio at baseline 
may serve to predict remission[24]. IL-1, which highly increases 
inflammation and bone resorption in RA[25], is considered as a future 
target in RA treatment.
    The sero-negative spondylarthropathies (SpAs) are a set of 
pathologies that include ankylosing spondylitis (AS), reactive 
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Figure 1 Overview of the main and general endocrine and paracrine pathways sustaining the physiological bone remodeling process and their modulation 
during chronic inflammatory conditions, including rheumatoid arthritis, spondylarthropathies, periodontal diseases, and postmenopausal osteoporosis.
ACPA: Anti–citrullinated protein antibody; ATP: Adenosine triphosphate; BMP: Bone morphogenetic protein; DKK1: Dickkopf-related protein 1; E2: 
17-beta-estradiol; FGF23: Fibroblast growth factor 23; GM-CSF: Granulocyte macrophage colony-stimulating factor; IFN-γ: Interferon gamma; IL-1: 
Interleukin-1; IL-17: Interleukin-17; IL-6: Interleukin-6; MCP-1: Monocyte chemoattractant protein-1; M-CSF: Macrophage colony-stimulating factor; 
NO: Nitric oxide; OPG: Osteoprotegerin ; PGE2: Prostaglandin E2; PTH: Parathyroid hormone; RANKL: Receptor activator of nuclear factor kappa-B 
ligand; RANTES: Regulated upon activation normal T-cell expressed, and presumably secreted; SCL: Sclerostin; SDF-1: Stromal cell-derived factor 1; 
TGF-β: Transforming growth factor beta; TNF-α: Tumor necrosis factor alpha; WNT: Fusion of Wingless, the Drosophila melanogaster segment-polarity 
gene, and Integrase-1, the vertebrate homologue.
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arthritis, and arthritis associated with psoriasis or inflammatory bowel 
disease[26]. SpAs share several common articular and periarticular 
characteristics that differ from RA and other forms of inflammatory 
arthritis. Thus, in SpAs, the coupling of bone formation and 
resorption is de-regulated with loss of bone in entheseal insertion 
sites (sites of ligamentous and tendon insertion) and excess of 
bone formation in periosteal sites close to bone erosion sites[27], 
which are not common sites of primary pathology in RA and other 
inflammatory arthropathies. In SpAs, the new added bone is formed 
by a process of endochondral ossification that recapitulates the 
cellular bone growth mechanisms occurring during skeletal growth 
and development in which an initial cartilaginous matrix is replaced 
by new bone[28]. These ectopic endochondral ossifications, implying 
TGF-β and BMPs[29], occur in SpAs at the margins of vertebral 
bodies and form syndesmophytes that are radiographically visible 
in SpA patients[30-31]. There is also evidence that cytokine production 
and Wnt/β-catenin pathways are dis-regulated[29-30,32]. Inhibition 
of inflammation using anti-TNF therapy has shown a reduction of 
the progression of bone erosions at sites of inflammation, but has 
no impact on the enhanced bone formation observed in SpAs[33-34]. 
Further studies are thus needed to explore the mechanisms involved 
in this apparent dissociation between bone erosion and formation 
during inflammation in SpAs.
    Periodontitis, highly associated with systemic inflammation, 
represents a set of inflammatory diseases triggered by disequilibrium 
in the quantity and quality of dental microbiota affecting the 
periodontium, i.e. the tissue that surrounds and supports the teeth[35]. 
It is characterized by gingival inflammation, progressive destruction 
of periodontal ligament and alveolar bone loss. Clinically, attachment 
loss leads to periodontal pocket in which active inflammatory 
process and bacterial invasion take place. Today, it is clearly 
established that periodontitis increase highly the risk of developing 
chronic inflammatory diseases such as cardiovascular diseases[36], 
metabolic syndrome[37], diabetes[38] and rheumatoid arthritis[39]. The 
role of periodontal bacteria such as Porphyromonas gingivalis in 
such processes is highly studied[40-41]. Prevalence of periodontitis 
concerned almost 47% of the US adult population, distributed as 8.7%, 
30.0%, and 8.5% with mild, moderate and severe periodontitis, 
respectively, according to the severity of the periodontal 
destruction[42]. Alveolar bone loss occurring in periodontitis results 
from uncoupling bone remodeling. Indeed, a significant decrease in 
bone formation associated with increased bone resorption is observed 
in experimental periodontitis[43] and is mainly driven by immune 
cells and inflammatory cytokines. For example, TH17 lymphocytes 
and B-lymphocytes are potent producers of RANKL[44] leading to an 
increased RANKL/OPG ratio parallel to severity of periodontitis[45]. 
Injection of antibodies against RANKL or OPG-Fc into an 
experimental model of alveolar bone destruction in response to 
injection of P. gingivalis resulted in significantly reduced periodontal 
bone resorption[46]. High amounts of pro-resorptive cytokine IL-17 or 
pro-inflammatory cytokines such as IL-1 have been found in gingival 
fluid from periodontal pockets from periodontitis patients compared 
to healthy patients[47-48]. Periodontium resident cells, including 
gingival fibroblasts, epithelial cells and vascular endothelium are also 
sensitive to inflammatory cytokines and bacterial agents and become 
major participants in the tissue destruction by increasing RANKL 
and cytokines production. The role of antigen-antibody complex in 
osteoclast activation during periodontitis is not elucidated even if 
it is known that OSCAR (Osteoclast-associated immunoglobulin-
like receptor), an adaptation protein linked to constant fraction of 
immunoglobulin, is expressed by osteoclasts[49]. Recently, increased 

levels of SOST and DKK1 in the gingival tissue and in the serum 
of patients with chronic periodontitis has been described when 
compared with non-periodontitis group, highlighting the altered 
activity of osteoblasts in periodontitis[50]. Today, biotherapies such as 
anti-DKK1 or anti-SOST, which boost osteoblast anabolic activity 
in osteoinflammatory disorders, are under processed in preclinical 
studies[51].
    Osteoporosis are systemic skeletal disorders that are very frequent 
in aged populations and affect over 50% of women aged over 
50 and 20% of men, with the incidence rising as people become 
older[52]. Osteoporosis are characterized by low bone mass and 
micro-architectural deteriorations of bone tissue with compromised 
bone strength and increased susceptibility to typical fractures 
(lumbar spine, femoral neck or distal radius, vertebral fractures 
and any fracture resulting from a low trauma in elderly) associated 
with an increase in morbidity and mortality[53-55]. According to 
the World Health Organization clinically definition, a patient is 
osteoporotic when his bone mineral density measured by DXA 
is 2.5 standard deviations below the typical peak bone mass of 
an young healthy person at the spine and hip[56]. Osteoporosis 
can be separated into 3 types: (1) primary osteoporosis in which 
no underlying cause can be clearly identified but often follows 
menopause in women and occurs later in life in men; (2) secondary 
osteoporosis in which the underlying cause is known (e.g. 
hyperparathyroidism, hypophosphatasia, diabetes type I & II, 
alcoholism, glucocorticosteroid use…); and (3) more rare forms of 
the disease, such as juvenile, pregnancy-related, and postpartum 
osteoporosis[57-59]. In mouse models, injections of estrogen induces 
an osteoclast apoptosis, inhibits the osteoclastogenesis, as well 
as modulates the production of several bone-resorbing cytokines, 
including interleukin (IL)-1, IL-6, tumor necrosis factor-α (TNF-α), 
M-CSF, and prostaglandins[60-62], thus indicating direct and indirect 
effects of estrogen on osteoclast development through immune 
cells[63-64]. It has also been shown that women with postmenopausal 
osteoporosis have an elevated T-cell activity with increased secretion 
of TNF-α and RANKL compared to healthy postmenopausal 
women[65], associated with significantly higher concentrations of 
circulating sclerostin[66]. Consequently, women with postmenopausal 
osteoporosis exhibit a higher percentage of circulating osteoclast 
precursors than control women[67]. At last, it has been recently 
reported that IL-17 is able to promote bone loss by stimulating 
osteoclast formation and inhibiting osteoblast differentiation[68], 
indicating once again the role of the immune system in the 
regulation of bone turnover.

CONCLUSION
Chronic inflammation is thus able to disrupt the balance between 
bone formation and resorption in several chronic inflammatory 
associated pathologies, such as RA, SpAs, periodontal diseases, 
or postmenopausal osteoporosis. Therefore, studying the cross-
regulations between the immune and skeletal systems may open 
several opportunities to discover new molecular targets to treat these 
diseases.
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