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INTRODUCTION
Osteosarcoma is the most common, non-hemopoietic, primary 
malignancy of bone. When untreated, osteosarcoma (OS) is 
essentially a fatal disease characterized by early hematogenous 
dissemination. With a combination of surgical resection and 
chemotherapy, long term disease-free survival is achievable in the 
majority of patients. Despite these vast improvements in patient 
outcome, targeted therapies for OS have not yet been realized. 
    The characterization of cell signaling pathways in OS presents 
multiple practical challenges, principally derived from the significant 
variation from tumor to tumor. For example, OS tumors vary 
by line of differentiation, histologic grade, tumor location, and 
treatment history. While all OS show some element of osteogenic 
differentiation, this can be highly variable. By convention, OS 
can be classified into osteoblastic, chondroblastic, and fibroblastic 
differentiation. Accordingly, the extent of bone matrix formation 
has been observed to correlate with various osteoinductive cytokine 
expression. Meanwhile, tumor grading predicts biological behavior 
based on histological appearance, with higher grade tumors showing 
increased cellularity, nuclear atypia, and mitotic figures. Considering 
the signaling cascade activity of BMP alone, for example, there exists 
a spectrum of activity and expression between low-grade and high-
grade tumors. Perhaps the simplest distinguishing feature of OS is the 
anatomic location. Intramedullary tumors tend to be more common 
(conventional OS), while superficial (periosteal) lesions are more 
infrequent. Finally, OS specimens vary in their treatment history and 
responsiveness to preoperative chemotherapy. Tumor necrosis with 
or without inflammation shows dramatic changes to OS cytokine 
signaling. With this variation of OS in mind, this review will focus 
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ABSTRACT
Osteosarcomas are the most common primary malignant bone 
tumors. Major advances in the treatment of osteosarcoma (OS) 
have revolutionized their clinical and surgical care. Despite these 
improvements, no specific targeted therapy has yet been employed 
for OS treatment. The present review will outline significant cytokine 
signaling pathways important in OS tumor biology, including the 
Bone morphogenetic protein (BMP), Hedgehog, and Wnt signaling 
pathways. Also discussed are the inherent challenges in studying 
cytokine signaling in OS, including the diversity in tumor location, 
grade, and lines of differentiation. Multiple BMP ligands and receptors 
are expressed across most OS cell lines and OS subtypes. Available 
data suggest that BMP signaling has pro-migratory effects in OS 
cells, as in the case with other sarcomas. Activation of Hedgehog 
and Wnt signaling has been observed in OS cell lines and/or primary 
human OS specimens. Emerging data suggests that Wnt signaling 
inhibition may prevent osteosarcomagenesis and/or sensitize OS cells 
to traditional chemotherapeutic agents. Likewise, interference with 
Hedgehog signaling transduction may reduce OS cell proliferation and 
in vivo tumor growth. In summary, multiple signaling factors show 
preclinical promise for cell targeted therapy in osteosarcoma.
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on cell signaling pathways important in OS tumor biology. 

Focus of review
The development of new, targeted therapies for OS hinges on 
improved understanding of cell signaling pathways important in 
osteosarcomagenesis, tumor growth, invasion, and metastasis. 
Surprisingly, few studies have specifically examined key signaling 
cascades in the context of OS tumor biology. For example, BMP, 
Hedgehog, and Wnt signaling cascades are relatively infrequently 
studied in the context of OS. Further, the majority of studies treat OS 
as a single disease entity, rather than taking into account the variety 
inherent in OS tumors. Conversely, studies focusing on only a single 
OS subtype may be limited in scope and conclusions. With these 
limitations in mind, this review will specifically focus on the role 
of BMP, Hedgehog, and Wnt signaling in OS and other malignant 
skeletal tumors. This review will highlight the recent advances in 
understanding the role of each signaling pathway in OS biology, with 
an emphasis on the divergent findings by various researchers.

BMP SIGNALING IN OS
Introduction to BMP signaling
Members of the transforming growth factor-β (TGF-β) superfamily, 
Bone Morphogenetic Proteins (BMPs) are extracellular cytokines 
originally isolated from bone extracts[1]. While responsible for 
numerous cell regulatory processes, BMPs are most studied for their 
ectopic induction of bone and cartilage[2]. To date, 31 different types 
of BMP ligands have been identified[3], of which BMP-2, -4, -7, and 
-9 are most commonly studied in the context of osteogenesis[4,5]. As 
expected from a key regulator of osteogenesis, investigators have 
observed BMP expression in both benign and malignant skeletal 
tumors, including benign bone-forming lesions[6], as well as benign 
non-bone forming lesions[7]. BMP-like protein was first identified 
in murine OS in 1974[8], confirmed soon after in human OS[9]. Since 
then, the significance of BMP signaling in OS has been studied by 
multiple investigators. Despite these studies, however, conflicting 
conclusions have been drawn in regards to the role of BMPs in OS[10]. 
    
Overview of BMP signaling 
The BMP signaling cascade initiates through extracellular ligand 
interaction with transmembrane type I and type II BMP receptors 
(BMPRs), both being serine-threonine kinases (Figure 1). Type II 
BMPRs handle initial BMP ligand interaction, binding via a high 
affinity mechanism which results in recruitment and activation of 
type I BMPRs, which are classified as low-affinity receptors[2,11,12]. 
While seven known variants of type I BMPRs exist, few actually 
contribute to osteogenic differentiation, predominantly BMPR-
IA and BMPR-IB[13]. BMP signaling propagation then proceeds 
downstream to activate several pathways via phosphorylation, 
including the Smad1/5/8, MAP Kinase, and c-Jun N-terminal kinase 
(JNK) signaling pathways[13,14]. It is principally through Smad1/5/8 
signaling that BMPs induce osteogenic programming (see[15] for a 
more detailed review of BMP signaling transduction).

Significance of BMP signaling in bone development
In regards to its role in bone development, the BMP signaling 
pathway plays a crucial role in the induction and regulation of 
osteogenic differentiation through both autocrine and paracrine 
pathways[16,17]. Through genetic modification of BMP receptors, 
inhibitors, and ligands in murine models, investigators have shown 
a role for BMP in signaling bone formation[18-21]. For instance, 
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modification of BMPR-IA receptors in transgenic mice results in 
reduced bone mass as well as irregular patterns of calcification[18]. 
Conversely, overexpression of BMP signaling inhibitors, such as 
Noggin and Gremlin, has led to impaired bone formation[22-24]. Of the 
31 known BMP ligands, only several are known to induce osteogenic 
commitment and terminal differentiation in mesenchymal stem cells 
(MSC); these include BMP-2, -4, -6, -7, and -9[5,25]. Of these, BMP-
2 is most well- studied, exhibiting induction of osteogenesis in MSC 
both in vitro and in vivo[26-33]. As BMP signaling exerts significant 
pro-osteogenic effects across multiple cell types and bone injury 
models, interest in the expression and manipulation of BMP signaling 
in OS tumor biology has been significant. 

BMP Signaling in OS 
BMP signaling elements and activity has been identified in several 
OS cell lines and primary cells, most notably in murine cell 
lines[8,34,35] and human OS cells lines[36-38]. Independent of their 
osteoinductive properties in vivo, expression of BMP-2, -4, and 
-6 have been observed in murine OS cell lines[39]. Via polymerase 
chain reaction, Gobbi et al observed BMP-2 through -8, along 
with BMP receptors, across five OS cell lines[40]. With regards to 
human OS specimens, BMP-2/4 expression has been observed in 
both immunohistochemical and in situ hybridization[41,42]. In fact, 
high-grade OS was shown to have the highest and most consistent 
expression of BMP-2/4[41]. In comparison, however, high-grade 
OS specimens exhibited reduced levels of BMP signaling activity 
in comparison to the benign osteoblastoma, as indicated by 
reduced phospho-Smad1 expression[43]. In a similar comparison, 
gene microarray compared osteoblastic to non-osteoblastic OS 
specimens[44]. BMP-7 expression was significantly increased in 
osteoblastic OS as compared to non-osteoblastic OS specimens. 
BMP-6, in contrast, was most highly expressed in chondroblastic 
OS[45]. Thus, the majority of OS specimens exhibit BMP signaling 
activity. Studies suggest that specific BMP ligand expression is 
influenced by the histological subtype and tumor grade, although 
this is incompletely defined. 
    Despite numerous studies examining BMPs in OS, relatively 
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Figure 1 Signaling is initiated via BMP ligand binding to a heterodimeric 
formation comprised of two different surface receptors, BMPR I and II. 
Type II receptor phosphorylates the type I receptor, thereby inducing 
signal transduction through the Smad pathway and mitogen-activated 
protein kinase (MAPK) via phosphorylation. Under the Smad pathway, 
which is the principal one governing osteogenic regulation, Smad proteins 
1/5/8 associate with Smad4 to enter the nucleus and regulate target gene 
expression. 
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molecules, adhesion molecules, and growth factors, to name a few. 
Taken together, these studies regarding predisposing conditions of 
osteosarcoma further reinforce the central role that BMP plays in 
bone formation, and why regulation of this signaling pathway holds 
potential in context of OS tumor biology. 

HEDGEHOG SIGNALING IN OS
Introduction to Hedgehog signaling
Hedgehog (HH) signaling pathway is essential for mesodermal 
tissue patterning and differentiation. Originally identified in 
Drosophila, Hedgehog was later identified across all vertebrate 
organisms. Three homologues exist for this protein: Sonic 
Hedgehog (SHH), Indian Hedgehog (IHH), and Desert Hedgehog 
(DHH)[52]. While DHH expression is limited and not of known 
importance in bone biology[53-56], both SHH and IHH are critical 
in embryonic development. Knockout of either SHH and IHH 
in murine models results in multiple congenital anomalies and 
neonatal lethality[57-59]. While IHH is more prominent in regulating 
chondrogenesis and endochondral formation[52], SHH has a role in 
vertebrate organogenesis, promoting adult stem cell proliferation 
in hematopoietic, mammary, and neural tissues[60]. Furthermore, 
SHH plays a role in skeletogenesis and development of facial, 
appendicular, and axial skeletal patterns[52]. With a significant role in 
cell differentiation and stimulation of osteogenesis, the HH pathway 
serves as an attractive potential target in OS tumor biology.

Overview of Hedgehog signaling 
The Hedgehog signaling pathway mechanism remains conserved 
across the three different homologues. Following initial pathway 
activation via autocatalytic cleavage, the C-terminus is modified with 

few have addressed the potential role for BMP signaling in tumor 
formation or disease progression. BMP-2 has been reported to 
exhibit an inhibitory effect on in vivo sarcomagenesis as seen in OS 
‘cancer stem cells’ (OS99-1 cell line)[46]. Conversely, BMP-2 and -9 
were found to exert pro-mitogenic effects in OS with ‘differentiation 
defects,’ tumors where overexpression of either BMP ligand failed to 
induce terminal osteogenesis[47]. Instead, tumor growth was increased, 
which suggests that some OS cells gain resistance to BMP induced 
osteogenesis and develop a concomitant shift towards sarcoma 
growth[47]. Lastly, in another study, OS cells were exposed to various 
extracellular matrix components in either the presence or absence 
of BMP-2; results showed that BMP-2 induces OS cell migration 
through regulating fibronectin-Integrinβ1 signaling[48]. In summary, 
few studies have examined the mechanisms via which BMP signaling 
may affect sarcomagenesis, sarcoma growth, and invasion – with 
somewhat conflicting results.
    Lastly, studies have shown that the BMP signaling pathway 
is upregulated in conditions predisposing to OS, such as Paget’s 
disease and fibrous dysplasia. For example, Urist et al examined 
patients with Paget’s disease, finding significantly increased BMP 
levels by radioimmunoassay in serum as compared to the normal 
control group[49]. Other investigators have examined BMP signaling 
in fibrous dysplasia. For example, Khurana et al described BMP-2 
and -4 expression fibrous dysplasia by RT-PCR, Northern blot, and 
immunohistochemistry[7]. Likewise, in fibroblast-like cells of fibrous 
dysplasia, Sakamoto et al found more frequent immunoexpression 
of TGF-β and fibroblast growth factor-2 (FGF-2), in addition to 
BMP-2[50]. Lastly, in bone tissue of women with fibrous dysplasia, 
a gene analysis using RT-PCR found nine upregulated genes and 
18 downregulated genes in comparison to non-fibrous dysplasia 
bone tissue[51]. These altered genes corresponded to collagen 
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Furthermore, activation of the HH pathway causes increase in Snail 
protein expression and decrease in E-cadherin and tight junctions[73], 
leading to a stimulation of angiogenesis and metastasis[74]. Lastly, it 
is worth noting that abnormal activation of HH has been shown to 
upregulate angiogenic factors angiopoietin-1 and angiopoietin-2[75], 
as well as antiapoptotic genes[76].
    In comparison to regular osteoblasts, human OS cell lines 
show increased mRNA expression of HH ligands, receptors, and 
downstream transcriptional activators[77]. Accordingly, in keeping 
with the known roles of HH in tumorigenesis, pharmaceutical 
antagonists of HH signaling have been examined[78]. One recent 
example is the development of Vismodegib, the first FDA approved 
drug to manipulate the HH pathway to inhibit tumor growth in basal 
cell carcinoma[79]. Its mechanism involves SMO inhibition, which 
inactivates transcription factors Gli1, thus hindering expression of 
tumorigenic genes. Currently, Vismodegib is undergoing clinical 
trials by the National Cancer Institute to test its potency in treating 
extraskeletal osteosarcoma, metastatic osteosarcoma. Likewise, FDA-
approved arsenic trioxide (ATO) used for the treatment of leukemias 
has shown preclinical success in OS both in vitro and in vivo. 
Specifically, ATO induces apoptosis of p53 deficient OS MG63 cells 
by inhibiting catalase[80]. Moreover, injection of ATO in vivo reduced 
tumor size in mice by 300% after an eight week period[81]. Finally, 
ATO also inhibits OS invasiveness and metastasis by reducing cell 
motility, migration, and adhesion[82].
    The HH pathway has also been observed to be altered in patients 
with predisposing conditions of OS. For instance, Cohen noted that 
abnormal bone in fibrous dysplasia were caused by mutations in 
GNAS1, downstream of the SHH pathway[83]. Likewise, Regard et al 
had previously demonstrated that GNAS gain-of-function contributed 
to fibrous dysplasia in osteoblast progenitor cells, but via upregulated 
WNT signaling[84]. In a subsequent study, Regard et al found that 
Gαs, which is encoded by GNAS, restricts bone formation via 
inhibition of HH[85]. This suggests a crosstalk phenomenon between 
the WNT and HH signaling pathways, in which Gαs serves as a key 
regulator of osteoblast differentiation. Thus, the consistent findings in 
predisposing conditions of OS further reaffirm the central role of HH 
signaling in OS development. 
    In summary, with mutation and dysregulation of the HH 
pathway correlated to tumor progression, targeted inhibition of HH 
signaling has enabled new strategies in the development of novel 
OS treatments. Inhibition of the cell surface receptors PTCH and 
SMO downregulates Gli1 and Gli2 transcriptional activity, thereby 
impeding OS progression through apoptosis. Collectively, these 
findings warrant additional research, as the possibility of using 
Hedgehog pathway inhibitors holds therapeutic promise for the 
treatment of osteosarcoma.

WNT SIGNALING IN OS
Introduction to Wnt signaling
The Wnt signaling pathway has been shown to play a variety of 
crucial roles in regards to cell fate, development, self-renewal, and 
tissue morphogenesis[86]. In bone development, Wnt signaling is 
required for limb bud initiation, early limb patterning, and late limb 
morphogenesis events[87]. Dysregulation of Wnt signaling can lead 
to osteoporosis[88], but also is associated with numerous and diverse 
diseases such as Parkinson’s disease[89], retinopathy[90], colon cancer[91], 
and melanoma[92]. Over 19 known Wnt ligands have been identified 
to date, with 15 receptors and co-receptors across seven protein 
families[86,92]. Furthermore, Wnt ligands activate distinct intracellular 

cholesterol while the N-terminus is modified with palmitoyl acid, 
thus increasing membrane solubility in the process (Figure 2)[61]. 
Hedgehog acyltransferase (HHAT) has also been deemed necessary 
in the post-translational palmitoylation of HH; in the absence of 
HHAT, HH secretion is downregulated[62]. The resulting multimeric 
form of the activated ligand undergoes paracrine signaling; secretion 
via 12-pass transmembrane protein, Dispatched (DISP), allows for 
the activation of 12-pass transmembrane Patched (PTCH) receptor 
on the receiving cell[63]. In its unbound state, PTCH functions as an 
inhibitor of Smoothened (SMO). From interaction with the activated 
HH ligand, Smoothened is released from constitutive inhibition 
by PTCH. Once free, SMO shuttles through the cilia and activates 
downstream target genes through utilization of the transcription 
factor glioblastoma gene product family, Gli2/3 complex and Gli1[63]. 
At the same time, this action inhibits the Gli3 repressor form. HH-
Gli activators have been shown to function in regulating lineage 
commitment during cell differentiation[64]. 

Hedgehog signaling in bone biology	
The HH signaling pathway plays a critical role in differentiation, 
directing cells toward an osteogenic lineage. HH signaling (SHH, 
Gli1) regulates osteoprogenitor cell differentiation by enhancing 
osteogenic differentiation and inhibiting adipogenic differentiation 
in multiple mesenchymal cell types[65]. For example, SHH added 
to adipose derived stromal cells (ASC) simultaneously induced 
osteoblast differentiation while suppressing adipocyte formation, 
both in vitro and in vivo[66]. Likewise, the IHH ligand has also 
been shown to exhibit an inverse relationship between osteogenic 
and adipogenic mesenchymal stem cell differentiation[67]. 
Expectedly, ossification is greatly impaired in developing animals 
with improper SHH and IHH signaling, leading to a variety of 
mutations; SHH mutant mice develop a cleft palate associated with 
disrupted FGF signaling[68]. In mice with mutations for IHH, an 
endochondral ossification defect led to severely shortened limbs 
while irregular intramembranous ossification led to skull vault 
defects[69]. Furthermore, endogenous HH is involved in regulation 
of angiogenesis and bone vascularization. Similarly, exogenous HH 
induces vascular formation in vitro. Specifically, implantation of 
recombinant SHH catalyzes in vitro vascular structure formation 
and enhances in vivo perfusion of artificial tissue and formation of 
de novo mature bone tissue[70]. The critical role of HH in stimulation 
of calvarial and appendicular bone development and basic bone 
biology has led to interest in the manipulation of HH signaling in 
OS tumor biology.

Hedgehog signaling in the biology and treatment of OS 
Dysregulation of the HH pathway has been associated with 
tumorigenesis, angiogenesis, and metastasis in a variety of cancers. 
For example, in the benign cartilage tumor osteochondroma, the 
lack of EXT expression and heparin sulfate production disrupts IHH 
signaling, resulting in excess proliferation[71]. To date, three key 
methods have been proposed to explain how HH signaling leads to 
tumor formation[72]. In the first, both increased expression of HH 
ligands and ectopic Gli or PTCH will lead to autocrine or juxtacrine 
HH activation. Second, activation of HH occurs independent of the 
ligand, where mutation of either transmembrane PTCH or SMO 
enables SMO to remain active on downstream Gli elements. By 
contrast, in the last approach, paracrine HH activation occurs in a 
ligand-dependent manner; ectopic expression or mutated elements 
can be passed from the tumor to the supporting stroma. This signaling 
has been shown to increase both tumor invasiveness and proliferation. 



signaling cascades, including the Wnt/β-catenin pathway, the Wnt/
Ca2+ pathway, and the Wnt/planar cell polarity (Wnt/PCP) pathway[93]. 
Due to its myriad of cellular functions, tremendous attention has been 
focused particularly on the key role of the Wnt/β-catenin signaling 
pathway in the regulation of bone mass[94,95] and on characterizing the 
ligands, receptors, and effectors of the Wnt pathway.

Overview of Wnt signaling 
The Wnt signaling pathways can essentially be separated into 
two main categories: the β-catenin-dependent pathway (canonical 
Wnt pathway) and the β-catenin-independent pathway (non-
canonical Wnt pathway). The canonical Wnt pathway has been 
studied more extensively, and functions by regulating the amount 
of the transcriptional coactivator β-catenin, which controls key 
developmental gene expression programs[96]. This β-catenin dependent 
mechanism initiates with Wnt ligand binding to the cysteine-rich 
portion of the seven-pass transmembrane receptors of the Frizzled 
family (Frz), as well as co-receptors such as lipoprotein receptor-
related protein (LRP)-5/6 (Figure 3)[96-98]. The Wnt-Frz-LRP-5/6 
complex then pairs with the intracellular phosphoprotein Disheveled 
(Dsh), thereby phosphorylating LRP-5/6 and recruiting Axin. As a 
result, the cytoplasmic Axin complex—consisting of the scaffolding 
protein, Axin, the tumor suppressor adenomatous polyposis coli gene 
product (APC), casein kinase 1 (CK1), and glycogen synthase kinase 
3 (GSK3)—is unable to phosphorylate cytoplasmic β-catenin. Thus, 
the E3 ubiquitin ligase β-Trcp fails to recognize the β-catenin for 
proteosomal degradation[96,99]. This stabilization and accumulation of 
cytoplasmic β-catenin allows β-catenin to enter the nucleus, combine 
with transcription factors of the lymphoid enhancer-binding factor/
T cell factor (LEF/TCF) family, and regulate gene expression[100]. 
Moreover, the canonical Wnt pathway regulates mesenchymal 
lineage specification via this mechanism[101].

77 © 2014 ACT. All rights reserved.

Nguyen A et al.  Novel Signaling Pathways in Osteosarcoma

    Several similarities exist between the canonical and non-canonical 
pathway mechanisms, namely the binding of Wnt ligand to Frz 
receptors to activate Dsh. However, the downstream pathways are 
activated by binding of a non-canonical Wnt ligand which no longer 
require β-catenin; hence, the non-canonical Wnt pathway is also 
known as the β-catenin-independent pathway. The non-canonical Wnt 
pathway contains two main pathways: the planar cell polarity (PCP) 
pathway and the Ca2+ pathway. In the Ca2+ pathway, the binding 
of a non-canonical Wnt ligand to Frz and a co-receptor, increases 
intracellular calcium levels, decreases cyclin GMP (cGMP) levels, 
and activates protein kinase C (PKC)[102]. 
    The binding of Frz receptors in the PCP pathway, on the other 
hand, activates Dsh, which then signals modulation of cytoskeletal 
elements including actin and microtubules via small GTPases[102,103]. 
By inducing modifications to the actin cytoskeleton, the PCP pathway 
mediates asymmetric cytoskeletal organization and the polarization 
of cells[103]. Both non-canonical pathways play a role in development, 
cell polarization, motility, and homeostasis[104]. Furthermore, non-
canonical Wnt ligands can stimulate osteogenic differentiation 
through the activation of both PCP and Ca2+ pathways[105,106]. 

Significance of Wnt signaling in bone development 
Wnt signaling plays vital roles in the development, growth, and 
homeostasis of various organs including the skeletal system[107-110]. 

Extensive investigation has adequately characterized the role of 
canonical Wnt signaling in maintaining bone homeostasis. Riddle 
et al. demonstrated that expression of both LRP-5 and LRP-
6 are required within mature osteoblasts for normal postnatal 
bone development[111]. When LRP-5 was mutated upstream of 
β-catenin, loss-of-function LRP-5 mutations resulted in osteoporosis 
pseudoglioma (OPPG) syndrome and a low bone mass phenotype, 
whereas gain-of-function mutations in LRP-5 led to an osteosclerotic, 
high bone mass phenotype[112-115]. Furthermore, mice selectively 
lacking either LRP-5 or LRP-6 in mature osteoblasts demonstrated 
significant reductions in whole-body bone mineral density. LRP-
6 mutant mice failed to accumulate normal amounts of trabecular 
bone, while LRP-5 mutant mice exhibited normal trabecular bone 
volume but later showed trabecular bone loss as they matured. Both 
mutants exhibited significant alterations in cortical bone structure[111]. 
Mice lacking both LRP-5 and LRP-6 developed severe osteopenia, 
and calvarial mesenchymal cells deficient for both LRP-5 and -6 
fail to form osteoblasts when cultured in osteogenic media, instead 
attaining a chondrocyte-like phenotype[111]. Additionally, the various 
roles of β-catenin through canonical Wnt signaling have been verified 
as a regulator of both osteoblast and osteoclast function in mature 
cells as well as in the early stages of osteogenesis and postnatal 
development[116]. Reduced levels of β-catenin in mesenchymal 
progenitor cells arrests osteoblast development at an early stage, 
resulting in fetal skeletal defects[116-119]. Furthermore, genetically 
induced β-catenin deficiencies in terminally differentiated osteoblasts 
can result in impaired maturation and mineralization along with 
upregulation of an osteoclast differentiation factor, leading to 
significant bone resorption[120,121].
    Inhibiting Wnt antagonists have also been studied as a method 
of stimulating canonical Wnt pathway activity to induce formation 
of new bone along with limiting bone resorption. In particular, 
Wnt antagonists Sclerostin and Dickkopf-1 (DKK-1) inhibit 
canonical Wnt signaling by bind to co-receptors LRP-5/6 in order 
to downregulate the accumulation of β-catenin, thus inhibiting 
β-catenin’s influence on gene expression[122,123]. Morvan et al 
demonstrated that mice lacking a single allele of DKK-1 showed a 
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hFOBs[134]. Moreover, knocking down β-catenin in Saos-2 cells, Ma 
et al observed increased Saos-2 sensitivity to methotrexate (MTX) 
induced cell death, sensitizing the cells to chemotherapy[134].
    In addition to the overexpression of numerous Wnt components 
in OS, the epigenetic silencing of genes encoding endogenous 
Wnt pathway inhibitors, such as Wnt inhibitor factor 1 (WIF-
1), underscore the implications of aberrant Wnt signaling in the 
development and progression of OS. WIF-1 mRNA expression was 
significantly decreased in numerous OS cell lines in comparison 
to normal human osteoblasts, attributed to WIF-1 promoter 
hypermethylation; it was found that WIF-1 expression downregulates 
the expression of MMP-9 and 14, thereby preventing the invasion 
and mobility of OS cells[135]. Kansara et al further confirmed that 
WIF-1 is epigenetically silenced in human OS, and target disruption 
of WIF-1 accelerates OS formation in mice[136]. Expression of other 
Wnt/β-catenin inhibitors, such as FrzB/sFRP3, has been found to be 
consistently suppressed in OS[137]. Likewise, LEF/TCF transcription 
factors have been shown to be negative regulators of the Wnt 
pathway[138]. Another suspected negative regulator of the canonical 
Wnt pathway is TWIST, a basic helix-loop-helix transcription 
factor that is typically expressed in low levels in OS[139]. Inducing 
overexpression of TWIST in vitro in Saos-2 and MG63 lines led 
to a decrease in β-catenin, while knockout of TWIST with RNA 
interference (RNAi) led to increased levels of β-catenin[139]. Further 
studies have demonstrated that increased TWIST expression in Saos-
2 OS cells causes an increase in sensitivity to cisplatin-induced 
apoptosis, whereas TWIST RNAi will actually increase resistance 
to apoptosis[139]. Taken together, the majority of the current literature 
supports the notion that aberrant activation of the Wnt pathway 
contributes to OS development.
    Following the notion that aberrant activation of the Wnt pathway 
contributes to OS, investigated treatment methods commonly target 
the Wnt pathway and regulators to inhibit and downregulate Wnt 
signaling activity[140]. Cadigan et al conducted a review showing 
that in the absence of Wnt binding to Frz and LRP-5/6 cell-surface 
receptors, a cytoplasmic complex consisting of axin, adenomatosis 
polyposis coli (APC), and glycogen synthase kinase 3 (GSK3) 
phosphorylates β-catenin, thereby promoting degradation of 
β-catenin, thus contributing to the downregulation of Wnt signaling 
activity[141]. To reduce β-catenin-dependent Wnt pathway activity, 
Brun et al silenced FHL2 (four and a half LIM domains protein 2) 
using shRNA in OS cells, which reduced the expression of Wnt-
responsive genes as well as Wnt-5a and Wnt-10a, inhibiting OS cell 
proliferation, invasion, and migration in vitro. Moreover, the study 
demonstrated that FHL2 silencing markedly reduced tumor growth 
and lung metastasis occurrence in mice, associated with the decreased 
Wnt signaling in the tumors[142]. 
    Several studies have suggested that Wnt pathway inhibition has 
anti-proliferative, pro-apoptotic effects in OS cells[143,144]. Activating 
the Wnt pathway can inhibit apoptosis, but when combined with 
chemotherapeutic drugs, doing so can be counterproductive[142,145]. 
Whether or not Wnt inhibition can directly induce apoptosis is not 
well documented, and the precise mechanisms remain unknown. 
    Finally, aberrant Wnt signaling is also observed in predisposing 
conditions of OS, such as fibrous dysplasia and Paget’s disease. 
For example, Regard et al showed that activation of the Wnt/ 
β-catenin pathway in osteoblast progenitors led to the fibrous 
dysplasia phenotype. Specifically, they analyzed the interaction 
between the Gα protein families and the Wnt/β-catenin pathway, and 
identified abnormally increased signaling levels as a cause of fibrous 
dysplasia[146]. Furthermore, the removal of the Gα protein mutations 
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markedly increased trabecular bone volume and elevated trabecular 
bone formation rate[124]. Yaccoby et al used antibodies raised against 
DKK-1 in the treatment of a mouse model of multiple myeloma 
revealed increased numbers of osteoblasts, reduced number of 
osteoclasts, and reduced myeloma burden in the antibody-treated 
mice[125]. Inhibiting the production or action of sclerostin resulting 
in enhanced canonical Wnt signaling led to increased bone mass in 
preclinical studies, where monoclonal antibody against sclerostin 
promoted trabecular bone formation rapidly in monkeys and rats 
without increases in resorption parameters[126]. Moreover, introducing 
inhibitors of antagonists Sclerostin and DKK-1, anti-Sclerostin and 
anti-DKK-1 respectively, has demonstrated the ability to stimulate 
bone formation and increase bone mineral density, with successful 
Phase I and II clinical trials[127,128]. Overall, the Wnt signaling pathway 
has been shown to have numerous and diverse effects in bone 
biology, including skeletal development, regulation of osteoblast/
osteoclast function, and maintenance of bone homeostasis. Thus, 
research regarding this multifaceted signaling pathway in context of 
OS tumor biology has been significant. 

Wnt signaling in OS  
Dysregulation of the Wnt/β-catenin pathway is closely associated 
with a variety of human cancers, including OS. β-catenin is required 
for differentiation and proliferation of cells in a wide variety of 
tissues, including the skeletal, neuromuscular, and cardiovascular 
system among many others. The critical involvement of aberrant 
activation of the Wnt/β-catenin pathway in oncogenesis is 
relatively well documented[129,130]; studies have demonstrated that 
overexpression of numerous Wnt components, including Wnt 
ligands and Frizzled and LRP receptors, highlighted the implications 
of aberrant Wnt/β-catenin signaled in the development and 
progression of OS. For example, Chen et al identified expression 
of multiple Wnt ligands (Wnt-2b, Wnt-3, Wnt-5a, Wnt-5b, and 
Wnt-14) and receptors (Frz-1, Frz-2, Frz-3, Frz-6, Frz-7, LRP-5, 
and LRP-6) across two human OS cell lines: MG63 and HOS[131]. 
Furthermore, two murine OS cell lines (K7M2 and K12) also 
demonstrated Wnt ligand and receptor expression[131]. Similarly, 
Hoang et al examined Wnts, Frzs, and LRP-5 expression using 
reverse transcription polymerase chain reaction (RT-PCR) in 
four OS cell lines: U2OS, HOS, 143B, and Saos-2[132]; all cell 
lines were found to express Frz-1, Frz-2, Frz-4, Frz-5, Frz-9, and 
LRP-5. Furthermore, out of 44 high-grade OS patient biopsies 
surveyed for mRNA, Hoang et al detected LRP-5 expression in 
50% of samples, and found a significant correlation between LRP-
5 expression and nuclear β-catenin accumulation with tumor 
metastasis[132]. Additional studies suggest a role for LRP-5 in OS; 
Guo et al demonstrated that Saos-2 cells transfected with dominant-
negative, soluble LRP-5 resulted in an increase in E-cadherin and 
decrease in N-cadherin, leading to the reversal of the epithelial-to-
mesenchymal transition (EMT), a hallmark of OS[133]. The increase 
in E-cadherin also caused a corresponding decrease in Wnt-
responsive transcriptional repressors SLUG and TWIST, thereby 
suggesting that LRP-5 promotes EMT and OS invasiveness[133]. 
Using real-time quantitative PCR analysis, Ma et al found that all 
major elements in the Wnt/β-catenin pathway—including Wnt-3a, 
β-catenin, and Lef-1—were consistently upregulated in human OS 
cell lines Saos-2 cells compared to human fetal osteoblasts (hFOB)
[134]. Ma et al also demonstrated that expression level of β-catenin 
consistently correlated with the invasiveness of OS. Western blotting 
analysis further confirmed that the protein levels of both total 
and active β-catenin were increased in Saos-2 cells compared to 
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decreased Wnt/β-catenin signaling and correspondingly decreased 
bone formation. In patients with Paget’s disease of bone, an inhibitor 
of Wnt signaling, Dickkoph-1 (Dkk-1), was found to have elevated 
levels in the serum[147]. Overexpression of Dkk-1 is implicated in 
osteolytic disease as it is expected to inhibit bone formation, as well 
as induce bone breakdown. Previous studies have also demonstrated 
increased Dkk-1 expression and protein in osteoblastic and stromal 
cell cultures from Paget’s lesions[148]. Thus, studies in predisposing 
conditions of OS reaffirm the importance of the Wnt signaling 
mechanism in OS development.

OTHER SIGNALING PATHWAYS IN OS
Numerous other signaling pathways play a role in osteogenic 
differentiation, and likewise are suspected to play a role in OS 
tumor biology. This review will briefly discuss Notch, Insulin-like 
Growth Factor (IGF), Transforming growth factor beta (TGF- β), and 
Fibroblast Growth Factor (FGF) in relation to OS. 
    The Notch signaling pathway plays a central role in the 
commitment of mesenchymal cells to osteoblastic lineage. For 
example, Ramasamy et al demonstrated that disruption of Notch 
signaling in mice led to impaired growth, reduced osteogenesis, 
shortening of long bones, chondrocyte defects, loss of trabeculae, 
and decreased bone mass[149].  Hughes et al showed that the Notch 
pathway is a significant contributor to the metastatic ability of 
osteosarcoma cells. In comparison to normal human osteoblasts and 
non-metastatic osteosarcoma cell lines, metastatic osteosarcoma cells 
exhibited higher levels of Notch1, Notch2, the Notch ligand DLL1, 
Hes1, a Notch-induced gene[150]. Thus, Notch is believed to hold 
an essential role in osteosarcoma metastasis, and regulation of this 
pathway can be crucial to the development of new therapies (please 
see[151] for a more detailed review).
    IGF plays a critical role in skeletal maturation during fetal growth 
and development. Specifically, IGF is heavily involved in limb 
morphogenesis. Agrogiannis et al observed growth retardation and 
delayed skeletal development in mice lacking the Igf gene[152]. In 
regards to osteosarcoma, the IGF-1 receptor has been an area of 
focus due to its role in pathogenesis; compared to normal osteoblasts, 
osteosarcoma cells are characterized by overexpression of the IGF-1R 
signaling pathways. Thus, IGF-1R has served as a target of regulation 
in development of new therapeutic drugs. In one study, R1507, a 
monoclonal antibody to IGF-1R, is currently undergoing phase II 
clinical trials in patients diagnosed with OS[153]. Kuijjer et al also 
showed an inhibitor of IGF-1R, OSI-906, decreased osteosarcoma 
cell line proliferation via inhibition of phosphorylation of IRS-1, a 
downstream target of IGF-1R signaling[154]. Thus, regulation of the 
IGF signaling pathway holds potential in the development of novel 
OS therapies (please see[155] for a more detailed review).
    TGF-β is another signaling pathway involved in numerous 
aspects of bone biology, including osteoprogenitor proliferation, 
differentiation, and commitment to the osteoblastic lineage. Lee 
et al demonstrated that TGF-β-2 can lead to more rapid calvarial 
bone expansion through activation of Erk-MAPK, which stimulates 
differentiation of osteoprogenitor cells into osteoblasts[156]. In 
the context of OS, Franchi et al showed that 17 of 23 different 
osteosarcoma cell lines demonstrated cytoplasmic reactivity for 
TGF-β1, -2, and -3. Furthermore, high-grade osteosarcomas 
showed higher expression of TGF-β1 in comparison to low-
grade osteosarcomas[157]. Overall, due to its implication in cell 
differentiation and commitment to the osteoblastic lineage, TGF-β is 
a target pathway that warrants further research in the development of 

new OS therapies (please see[158] for a more detailed review).
    Lastly, the FGF cascade is an important signaling pathway 
involved in skeletal development and bone regeneration. Through 
activation of FGF receptors (FGFR), this signaling pathway 
controls osteoprogenitor cell replication and differentiation into 
osteoblasts[159], aberrations in which can lead to various congenital 
skeletal diseases[160]. In context of OS tumor biology, Shimizu et al 
showed that Fgf2 enhanced proliferation, migration, and motility 
of osteosarcoma AX cells in mice[161]. With a significant role in 
osteosarcoma pathogenic progression, inhibition of the FGF pathway 
is a potential target area of research that can lead to new OS therapies 
(please see[162] for a more detailed review). 

DISCUSSION
In summary, much remains unknown regarding those cytokine 
signaling pathways that drive osteosarcomagenesis, as well as 
sarcoma proliferation, invasion, and metastasis. Various signaling 
cascades with importance in basic bone biology have been studied 
in OS tumor biology, including BMP, Hedgehog, and Wnt signaling. 
Other signaling cascades not discussed here include Notch[163], 
Insulin-like Growth Factor (IGF)[153,164], Transforming growth factor 
beta (TGF-β)[165,166], and Fibroblast Growth Factor (FGF)[167,168], to 
name a few. Although not directly discussed, crosstalk between 
signaling cascades is a rich area of investigation. Therefore, it is vital 
to continue investigating inhibition of these signaling pathways as 
a strategy to combat diseases such as OS. Development of targeted 
therapies for osteosarcoma hinges on improved understanding of 
those signaling pathways important in OS tumor biology.
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