Partial-thickness rotator cuff tears (PTRCT) can be articular-sided, bursal-sided or intratendinous. New research suggests that a considerable proportion (up to 30%) of cuff thickness on the articular side is taken up histologically by the superior joint capsule conjoined to the rotator cuff tissue. This means that newer reviews of the surgical options may be required to complement the Ellman classification which grades lesions as grade 1 (less than 25% of tendon thickness involved), grade 2 (25 – 50%) or grade 3 (greater than 50% of tendon thickness). If primary non-operative treatment fails, many surgical options can be considered. The surgical technique chosen has been based on depth of the tear and the tear location. Surgical treatment can be distinguished between debridement and repair of PTRCT’s, as well as biologically active experimental techniques showing some promise. Debridement can be successfully performed for bursal-sided Ellman grade 1 tears and articular-sided grade 1 and 2 tears. All other techniques show better results with a repair technique, which can be either performed with an in-situ or trans-cuff repair technique (leaving the intact rotator cuff portion intact) or with tear conversion to a full-thickness cuff tear and subsequent repair. Successful functional and structural outcome after repair of Ellman grade 3 tears can be shown with both repair techniques. The current literature also suggests evidence for inferior outcomes and higher failure rates after arthroscopic debridement of bursal-sided partial-thickness rotator cuff tear compared to articular-sided lesions, which may reflect the contribution of capsule to the tear. Articular-sided partial cuff tears are frequently seen in overhead athletes and should be treated non-operatively whenever possible. If conservative treatment fails, debridement seems to be a better surgical choice in most cases, as only a half of professional athletes return to the same level of play after repair of partial-thickness rotator cuff tears.

Key words: Partial-thickness; rotator cuff tears; Arthroscopic rotator cuff repair; Debridement; Conversion to full-thickness; Transtendon repair

INTRODUCTION

Partial-thickness rotator cuff tears (PTRCT) have been described with a prevalence ranging from 13% to 40%[1-3], with increasing scientific publications focusing on current management options[4]. In this review we are focusing primarily on the surgical treatment of articular-sided and bursal-sided PTRCTs of the supraspinatus and
infraspinatus tendon, with partial subscapularis tears considered a separate entity discussed in the last chapter.

ANATOMY

The rotator cuff shows a 5-layer histologic structure with an array of tendon, ligament and capsular tissue on the articular side that is less tolerant to stress than the bursal side. Furthermore, a zone of relative hypovascularity can be found on the articular surface of the supraspinatus tendon close to the insertion. This is a proposed intrinsic reason for development of articular-sided cuff tears. The histology of the rotator cuff has received considerable attention in recent literature with the realization that the superior capsule of the shoulder joint contributes a significant proportion of the thickness and footprint of the supraspinatus and infraspinatus in the shoulder joint. Thus the “effective cuff ratio” of significant articular-sided tears means most active fibres of the rotator cuff are intact, whereas the “effective cuff ratio” of much lower grade bursal-sided cuff tears is compromised, rendering the current classifications of PTRCTs somewhat obsolete.

Better understanding of the anatomy of the contributions to the insertion of the supraspinatus and the infraspinatus tendons on the greater tuberosity have highlighted the relative importance of the infraspinatus and the smaller width of the supraspinatus footprint than previously considered. This may fuel the arguments of non-surgical advocates for leaving even high grade PTRCTs alone, despite evidence that progression to full thickness tears and poorer clinical outcomes found in longitudinal studies.

PATHOLOGY

Three different tears can be distinguished depending on the location, which are articular-sided, bursal-sided or intra-tendinous. Ellman introduced a classification for PTRCT in 1990, based on their location and depth as measured during shoulder arthroscopy. In this classification, articular-sided (A) or bursal-sided (B) PTRCTs are classified as grade 1 for tears less than 3 mm thickness, as grade 2 if the tear is from 3 to 6 mm thickness, and as grade 3 for tears greater than 6 mm in depth. Ellman Grade 3 tears are representing PTRCTs greater than 50% of the tendon thickness, based on anatomic measurements of normal supraspinatus tendon thickness with a mean of about 12 mm, although the previously noted research highlights the percentage of cuff tear thickness is much greater on the bursal side.

Another possible reason for development of a PTRCT is postero-superior impingement. This pathologic condition, better known as internal impingement, is commonly seen in the throwing overhead athlete and is associated with PASTA (partial articular supraspinatus avulsion) lesions and postero-superior labral tearing as well as SLAP (Superior Labral Anterior to Posterior) lesions. As proposed by Neer, bursal-sided tears are generally considered to be a consequence of sub-acromial impingement. However, newer parameters as the critical shoulder angle, the acromial index and the greater tuberosity angle seem to be more valid and real risk factors for rotator cuff tears compared to the acromion shape according to Bigliani.

CLINICAL PRESENTATION

The most common symptom of PTRCTs is pain, which can be stronger than in full-thickness rotator cuff tears. Common imaging studies include ultrasonography and MRI or magnet resonance arthrography, with similar accuracy according to the literature. The diagnostic gold standard remains arthroscopy with direct visualisation and probing of the bursal and articular surfaces of the rotator cuff with measurement of the tear size. However, this can be challenging sometimes and especially intratendinous tears are difficult to assess.

Progression of symptomatic PTRCT to full-thickness cuff tears has been reported in 40% of cases, whereas spontaneous healing has rarely been reported.

In a patient with a symptomatic PTRCT a trial of at least 3 to
6 months of non-operative treatment is typically the first line. This includes activity modification and use of analgesic and anti-inflammatory medications. Corticosteroid injections are a further non-operative treatment adjunct, located into the subacromial space in case of a bursal lesion and into the glenohumeral joint for treating an articular-sided PTRCTs. If conservative treatment fails, operative treatment should be discussed.

SURGICAL TECHNIQUES

The decision, which surgical technique is chosen, is commonly based on the depth of the PTRCT. Generally, it can be distinguished between debridement and repair of PTRCTs. Repair of PTRCTs can either be performed with an in-situ (“trans-cuff”) repair technique (leaving the intact cuff portion intact) or with a tear conversion into a full-thickness cuff tear and subsequent repair. Successful functional and structural outcome results compared to articular-sided tears after treatment with debridement and acromioplasty. With our “new” knowledge of the contribution of superior capsule to the articular side of the cuff, this would seem more logical as there is less true cuff destruction with a PASTA than a bursal tear. These findings were supported even in lower grade PTRCTs of Ellman grade 2 in a study by Cordasco et al. and in Ellman grade 1 and 2 tears by Kartus et al., who found – although statistically non-significantly – lower functional scores in bursal-sided tears.

Debridement

Most authors to date recommend debridement (combined with acromioplasty in case of bursal-sided tears) for tears involving less than 50% of tendon thickness, signifying Ellman grade 1 and 2 tears. However, as proposed in a recent systematic review by Katthagen et al., some evidence suggests that repair of partial-thickness rotator cuff tears may be even beneficial over debridement for lower grade bursal-sided tears.

Weber reported on results of PTRCTs of > 50% of tendon thickness and found that bursal-sided tears had significantly inferior results compared to articular-sided tears after treatment with debridement and acromioplasty. With our “new” knowledge of the contribution of superior capsule to the articular side of the cuff, this would seem more logical as there is less true cuff destruction with a PASTA than a bursal tear. These findings were supported even in lower grade PTRCTs of Ellman grade 2 in a study by Cordasco et al. and in Ellman grade 1 and 2 tears by Kartus et al., who found – although statistically non-significantly – lower functional scores in bursal-sided tears.

The authors’ preferred method

After failed conservative therapy, we treat articular-sided PRCTS Ellman grade 1 and 2 operatively with debridement of the cuff, together with arthroscopic subacromial decompression and bursectomy. However, for bursal sided tears we changed our approach over the last years. Whereas Ellman grade 1 tears are still treated with debridement of the bursal sided cuff tear of less than 25% tendon thickness involved, we complete both Ellman grade 2 and 3 tears to full-thickness tears and repair it similar to a standard full thickness cuff tear. Debridement is always combined with an anterolateral acromioplasty to reduce any spurs of the acromion as potential mechanic conflict and also to correct the critical shoulder angle if it is more than 35° on preoperative ap X-ray.

In-situ repair versus tear completion into full-thickness cuff tear and repair

Articular-sided partial-thickness rotator cuff tears

Several surgical techniques of in-situ repair have been described, however, with no superiority of one specific technique to the others (Figure 3). A proposed advantage of transtendon repair techniques with preservation of the intact rotator cuff tendon integrity on the bursal side is the maintenance of the original footprint and therefore a more anatomic repair. Potential disadvantages are shoulder discomfort, slow recoveries and medial cuff failures, as published in a study by Woods et al.

Conclusions regarding the superiority of one technique to the other are controversial in the two most recent systematic reviews and meta-analyses. On the one hand, Sun et al. suggested in 2015 in a questionable meta-analysis that transtendon repair techniques are better, because a significantly lower retear rate was found compared to full-thickness tear conversion techniques. However, that study has major limitations as also retrospective cohort studies were included and not sufficient details are provided about the re-tears in the result section. Both techniques provided similar functional results in that publication. Whereas on the other hand, Katthagen et al. concluded in a systematic review in 2017 that no significant differences could be found in the three included studies that directly compared the structural outcomes of in-situ repair versus repair after conversion to full-thickness cuff tears of articular-sided and bursal-sided PRCTs.

The authors’ preferred method

Articular-sided partial rotator cuff tears with less than 50% tendon thickness involved (Ellman grade 1A and 2A) are treated with debridement in case of persistent symptoms after a trial of conservative treatment of at least 6 months. Ellman grade 3A tears are converted to a full-thickness cuff lesion and repaired in a standardized fashion. Small tears (< 1 cm) are treated with a single row repair, whereas tears larger than 1cm are repaired with a double row suture bridge.

In our personal experience, transtendon repairs are more likely to suffer from more and prolonged postoperative pain as well as a higher risk of postoperative stiffness. This is supported by a prospective comparative study by Shin, who compared a transtendon in-situ repair...
repair with a conversion technique in 48 patients and could show that patients in the transtendon repair group had significantly more pain and recovered faster with higher scores in the early postoperative period.

Bursal-sided partial thickness rotator cuff tears

Also for bursal-sided PRCTs, several different techniques of in-situ repair have been described\[35-37\], with similar results. Tear conversions to full-thickness rotator cuff tears and repair can also be performed.

Figure 4 (out of Garavaglia et al)\[43\]. Illustration of the modified Lafosse classification for subscapularis tendon tears.
with one of the various techniques for rotator cuff repair. Shin et al\(^{(35)}\) compared a modified Mason-Allen single row repair to a double row suture-bridge technique in 84 patients with Ellman grade 3B lesion and found similar results in both groups.

There is no clinical data showing any superiority for tear conversion and repair or in-situ repair to each other. However, one recent animal study by Gerelli et al\(^{(31)}\) showed increased healing characteristics for a completion repair technique compared to an in-situ repair in created bilateral bursal sided PRCTs of the supraspinatus tendon in rats. The authors are discussing the hypothesis that this response could be caused by the effect of debridement of the chronic degenerated tendon.

The authors’ preferred method

As mentioned before, we complete bursal-sided partial cuff tears of more than 25% tendon thickness involved (Ellman grade 2B and 3B) to full-thickness tears and repair it as in a standard full thickness cuff tear. In most cases, this is combined with an anterolateral acromioplasty to reduce any spurs of the acromion as potential mechanic conflict and also to correct the critical shoulder angle.

In the authors’ opinion, especially in chronic bursal-sided lesions caused by extrinsic factors as mechanical subacromial impingement, the tissue quality of the bursal sided cuff is often not good enough for an in-situ repair because of tendinosis.

Partial thickness rotator cuff tears in overhead athletes

Overhead athletes are more likely to have a rotator cuff pathology, as known especially in baseball pitchers\(^{(2,39)}\). PRCTs are frequently seen in throwers, however, with poor correlation to symptoms in throwing shoulders\(^{(41,43)}\). Internal impingement with glenohumeral internal rotation deficit, posterosuperior labral tears and articular-sided PRCTs is common in the thrower’s shoulder\(^{(41)}\).

Special effort should be taken to treat this lesions non-operatively if possible, as only half of professional and competitive athletes return to an equivalent level of play after repair\(^{(42)}\). On the other side, recreational athletes are more likely to return to the same level of play as before their injury\(^{(42)}\).

If conservative treatment fails, debridement alone seems to be superior compared to repair of PRCTs in the throwing athlete\(^{(41,43)}\).

The authors’ preferred method

Symptomatic articular-sided partial cuff tears in the overhead athlete should be treated non-operatively with a reasonable outcome in most cases. If conservative treatment measures fail, our preferred surgical treatment is debridement alone, even for most Ellman grade 3 lesions. However, if the tear involves more than about 70% of the tendon thickness, we complete the tear and repair a full-thickness cuff tear in a standardized fashion.

Partial thickness subscapularis tears

Tears of the subscapularis tendon used to be underdiagnosed in the past and are more commonly diagnosed with arthroscopic techniques\(^{(46)}\). The subscapularis is the strongest tendon of the rotator cuff and plays an important role in shoulder function as the only anterior tendon\(^{(46)}\).

The modified Lafosse classification of subscapularis tendon tears\(^{(46)}\) distinguishes not only between partial (grade I) and complete tears (grade II) of the upper third of the tendon, but also between minor fraying of the insertion site (grade Ia) and partial tears of the deep layer (grade Ib). (Figure 4)

Surgical options include debridement and repair, often combined with either biceps tenotomy or tenodesis in case of instability of the long head of biceps tendon. Further additional procedures which can aid are anterior capsular release in case of capsular stiffness or inflammation and coracoplasty in case of subcoracoid impingement.

The authors’ preferred method

Symptomatic upper third tears of the subscapularis tendon are debrided if only there is a fraying (grade Ia). If it is an upper angle tear either partially involving the deep layer (grade Ib) or complete in the upper third (grade II), it is repaired with a suture tape and a knotless anchor using a single anterolateral portal.

REFERENCES

Garavaglia G, Ufenast H, Taverna E. The frequency of subscapu-
Borbas P et al. Management of partial-thickness rotator cuff tears

47. Habermeyer P, Magosch P, Lichtenberg S. Classifications and scores of the shoulder. Berlin u.a.: Springer; 2006. XIV, 297 S.

Peer Reviewer: Javier Muñoz-Marín