Anteversion of the Acetabular Cup Determined by Digital Radiographic Software as Compared to CT-Based Measurement

Ronen Debi, Omri Lubovsky, Ornit Cohen, Ira Bachar, Eytan M Debbi, Ehud Atoun

INTRODUCTION

Evaluation of the acetabular cup positioning is critical in the postoperative evaluation of patients following total hip arthroplasty (THA). Poor orientation is highly correlated with pain, excessive wear and instability. Cup abduction and cup anteversion can be measured on printed radiographs using a variety of methods and formulas[1-5]. While these were found to be precise in measuring cup abduction, they have been found to be unreliable at accurately determining cup anteversion[6-10].

As an alternative to plain radiographs, computer tomography...
scans (CT) can also be used to determine cup anteversion\[^{1,11-13}\]. CT measurements methods have been shown to have high precision, and although not a gold standard, are considered to be the most accurate method to date of determining cup anteversion postoperatively\[^{12,14-20}\]. Nevertheless, there are several downsides to CT, such as patient radiation, complexity in analysis, cost, availability and time. As such, researchers have continued to look for accurate methods of determining cup anteversion on plane radiographs\[^{11,14,12}\].

Digital imaging software has gained popularity in recent years due to its success in precise preoperative planning for THA. Dedicated software was developed to enable easy, fast and accurate measurements of shapes and size of implants on digital radiographs\[^{18,11}\]. This software also incorporate dedicated tools for evaluation of cup anteversion after THA. Their accuracy in this regard, however, has not yet been thoroughly examined.

The purpose of the present study was to examine the accuracy of digital imaging software tools for determining cup anteversion on digital radiographs in comparison to CT-based measurements. The study was designed to test the hypothesis that these tools would be as precise as CT-based tools.

MATERIALS AND METHODS

After receiving approval from the local ethical committee (IRB no. 0385-11) we retrospectively reviewed the notes and radiology files of 980 consecutive patients that underwent THR Between 2002 to 2006, in the Hadassah Mount Scopus hospital. We identified patients that underwent a postoperative CT scan containing the pelvis in addition to a postoperative pelvic AP X ray. CT scans were preformed due to variety of reasons in the days, months or years after surgery, most of them because of non-orthopedic indications (Suspected pulmonary embolism, pelvic and abdominal pathology etc…) yet had enough data to enable cup orientation analysis.

A conventional anteroposterior radiograph projection was taken of each patient. The film-focus distance was 1000 mm. The central beam was directed and the pubic symphysis and both hip joints (operated and non-operated) were in view. All radiographs were processed using the TraumaCAD\[^{6}\] digital software system (TraumaCad, Voyant Health, Petah tikva, Israel). The software was used to measure the anteversion angles of the acetabular cup in each patient. The software extrapolates anteversion angle by measuring the area of the elliptical projection of the cup: The more area, the greater the magnitude of the anteversion (Figure 1).

Patient underwent a CT scan, using a GE Light Speed VCT (GE Corp, Fairfield, CT, USA) helical scans with 2.5-mm slices spaced 1.25 mm apart. CT image data for each patient were analyzed using the Amira\[^{7}\] visualization and analysis software using a costume written code. (Amira, Visualization Sciences Group, Burlington, MA, USA). The software allows for the calculation cup anteversion by labeling the acetabular cup edge and the Anterior Pelvic Plain (APP) as a reference plane. Three landmark points define the APP: the foremost pubis landmark point (PUBIS), and the left and right anterior–superior iliac spine (ASIS-L, ASIS-R). The APP is directly computed from these three points. The Acetabular Cup anteversion is defined by a set of ten points on the acetabular cup edge. The points are identified on the acetabular cup boundary and selected on sequential CT axial cuts (Figure 2).

The data distributions were examined using Kolmogorov-Smirnov tests for normality. T-tests were used to examine the difference between digital radiographic measurements and CT-based measurements. Pearson correlation coefficients were determined for the relationship between system measurements. Additionally, the angle differences were measured as a function of angles size using a correlation and regression analysis. Significance was set at $p < 0.05$.

RESULT

A total of 62 patients were found to have both post operative CT scan and digital X-rays of their pelvic. This study cohort consisted of 47 females and 15 males, with a mean age of 67.2 ± 12.8 years.

There was a significant average difference of 13.79 ± 13.51° between radiographic and CT-based anteversion angle measurements ($p < 0.001$), with radiographic measurements showing smaller acetabular anteversion angles. There was a significant, moderate correlation between angle measurements of both systems ($r = 0.534$; $p < 0.001$; Figure 3). The difference in anteversion angles between systems showed a high correlation with angle size ($r = -0.910$; $p < 0.001$; Figure 4), with a regression slope of -0.78.

DISCUSSION

The orientation of the acetabular cup is a critical factor in patient follow-up after THA. Poor orientation can result in postoperative pain, prosthetic instability and accelerated wear\[^{17-23}\]. CT provides
Debi R et al. Acetabular cup anteverision evaluation on radiographs

an accurate measurement of cup orientation, but expose the patient for higher dose of radiation, can be time consuming and costly[1-4]. Therefore, traditionally, manual measurements have been used to measure abduction angle of the acetabular cup on the printed radiographs since they are relatively inexpensive, easy to interpret, more available and give low radiation exposure[5,6]. Today, digital radiographs are widely spread and images are saved on picture archive and computerized systems (PACS) rather than being printed. We evaluated the accuracy of cup anteverision measurements on digital images by dedicated software.

The results of our study showed a significant difference between radiographic and CT-based anteverision angle measurements. Additionally, the range of error was relatively large, suggesting imprecision. Several other studies have also documented a significantly large error in anteverision angle as measured by printed radiography[7]. Marx et al evaluated five algorithms for measuring radiographic acetabular anteverision and found that most show a significantly smaller angle ranging 14.3 to 14.5° (69-88% error) from CT-based measurements[8,9,10,11]. They also found remarkably high standard deviations in measurements (10.2° to 10.8°[12]). The most accurate algorithm was Widmer’s, which showed a difference of 6.4° (21.4% error) from CT-based measurements[12]. The present study showed a difference of 13.79 ± 13.51° (48.4% error) from CT-based measurements. This suggests that the digital methods employed here are approximately as accurate as Widmer’s algorithm, and superior to most other methods of calculating radiographic acetabular anteverision.

The present study also examined the correlation between angle difference and the CT-based angle measurements. Results indicated a very high correlation between the differences in anteverision measured and CT-based angle angles values (r = 0.910; regression slope -0.78). This trend was also studied by Marx et al, who showed similar trends of moderate correlations and regression slopes, with the lowest being for Widmer’s algorithm[12]. This demonstrates that the underestimation in angle showed by radiographic measures worsens as the true angle increases, and therefore much of the change is unaccounted for by radiographic measurements. Interestingly, the current study and Widmer’s observed the lowest errors at anteverision angles in range of 10-20°.

The results of the present study suggest that calculating the elliptic parameters of the projection of the acetabular implant using digital imaging tools is not accurate at measuring cup anteverision as compared to measurements on postoperative CT. The source of error in radiographic measurements of acetabular anteverision angles can result from the variable pelvic tilt in each patient. Additionally, an observation of anteverision may actually be retroversion, as the two are indistinguishable on AP radiographs.

A further observation from the study results is that there may be a method of correcting for the radiographic error observed. A simple correction was first suggested by Ackland and Pradhan[12], but considering the high correlation between true anteverision angle and error, a more complex correction is likely necessary. Correcting for the correlation alone is also possible, but this increases imprecision dramatically and therefore cannot be used alone either. Future studies should examine possible mathematical corrections for the radiographic measurements in hope of improving these calculations.

There are several limitations to the present study. This was a retrospective study of non-consecutive patients due to the need to obtain postoperative CT scans of the pelvic which are not routinely performed. We have used CT-based calculations of cup anteverision angle for comparison with the radiographic calculations. CT-based calculations are not true measurements of cup abduction angle, but have been shown in previous studies to be of high accuracy[13,14], and thus CT was assumed to be a valid reference tool.

REFERENCES

8. Hassan DM, Johnston GH, Dust WN, Watson LG, Cassidy D.

17. Steinberg EL, Shasha N, Menahem A, Dekel S. Preoperative planning of total hip replacement using the TraumaCad system. *Arch Orthop Trauma Surg* 2010; 130: 1429-1432. [DOI: 10.1007/s00402-010-1046-y]

Peer reviewer: Bulent Karsilioglu