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ABSTRACT
Poly(Q) disorders includes neurodegenerative disorders associated 
with irreversible loss of specific neurons in adult brain. The causative 
factor has been identified as the abnormal expansion of CAG repeats 
in protein coding region of the gene which leads to formation of pro-
tein Inclusion Bodies (IBs) and altered cellular physiology. The mo-
lecular pathogenesis of poly(Q) disease involves protein mis-folding, 
aggregate formation, blockage of axonal transport, mitochondrial 
dysfunction and global transcriptional dysregulation. Formation of 
inclusion bodies is a hallmark and common characteristic feature of 
all poly(Q) disorders. In view of limitation attached with human ge-
netics, Drosophila has emerged as an excellent system to model the 
human neurodegenerative disorders due to availability of flexible yet 
powerful genetic tools and owing to the similarity between some of 
the fundamental cellular processes with humans. Drosophila system 
has been extensively utilized not only to decipher the mechanistic 
detail of diseases pathogenesis but also to screen several genetic and 
chemical modifiers which could potentially help in designing novel 
therapeutic strategies. The Drosophila melanogaster, thus, expected 
to contribute meaningfully towards novel discoveries to design novel 
therapeutic strategies to combat the devastating human neurodegen-
erative disorders.
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INTRODUCTION
Polyglutamine [poly(Q)] d iseases represent a group of 
neurodegenerative disorder which exhibit some common clinical 
symptoms and share comparable mechanism of molecular 
pathogenesis. Some of the common symptoms of poly(Q) disorders 
include loss of body coordination, memory, cognitive thinking and 
difficulty in speech[1]. There are nine of the neurological diseases: 
Spinal and bulbar muscular atrophy (SBMA), Huntington’s disease 
(HD), six of the Spinocerebellar ataxias (SCA1, 2, 3, 6, 7 and 17) and 
Dentatorubral pallidoluysian atrophy (DRPLA) which are commonly 
grouped as poly(Q) diseases[2,3,4]. In general, poly(Q) disorders are 
late onset, progressive in nature and cause degeneration of specific 
population of neurons in the brain as per the characteristics of each 
disease type[2]. For instance, in HD basal ganglia and cortical neurons 
are highly affected whereas purkinje cells in cerebellum are mostly 
affected in case of SCA3. Most forms of the poly(Q) disorders are 
dominantly inherited except spinal and bulbar muscular atrophy 
which shows X-linked recessive inheritance pattern[5].

MOLECULAR MECHANISM UNDERLYING 
T H E P A T H O G E N E S I S O F P O L Y ( Q ) 
DISORDERS
The first case of poly(Q) disease was reported by George Huntington 
in 1872 and named “chorea” due to dance like movement of patient 
suffering from this neurodegenerative condition[6]. For several years 
the underlying mechanism and cause of disease remain obscure but 
the advancement in biological sciences particularly in later part of 
twentieth century paved way to the understanding of predominant 
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FORMATION OF PROTEIN INCLUSION 
BODIES ( IB ) AND IMPAIRMENT OF 
TRANSCRIPTIONAL MACHINERY
Expansion of CAG repeats leads to major changes in cellular 
physiology such as formation of protein Inclusion Bodies (IBs), 
defects in protein folding machinery, impairment of transcriptional 
machinery, defect in axonal transport system, cellular apoptosis, 
mitochondrial defects and dysregulation of intracellular Ca2+ 
homeostasis (Figure 1). As depicted in Figure 1, expansion of CAG 
repeats leads to elongation of glutamine tract of the protein and alters 
its native conformation. The mis-folded protein interacts with other 
proteins comprising glutamine repeats and interrupts the molecular 
function(s) of the target proteins. Subsequently, such interaction 
results into formation of microscopic molecular aggregates 
commonly known as inclusion bodies[14,15]. The kinetics of the 
polymerization of poly(Q) proteins involve prolong lag period which 
facilitates formation of the nucleus of protein aggregate followed 
by extension period that allows rapid incorporation of monomers to 

basis of the onset of disease. It was found that expansion of CAG 
repeat in the coding sequence of androgen receptor was associated 
with X-linked neuromuscular disorder, commonly known as Spinal 
and Bulbar Muscular Atrophy (SBMA) or Kennedy’s disease[7]. 
Subsequently, genetics of Huntington’s disease (HD) was also 
deciphered and expansion of CAG repeat was established as the 
primary cause[8]. Thereafter, subsequent investigations in this area 
led to identification of 7 more of diseases caused by expansion triplet 
repeat other than CAG. For instance, fragile X syndrome (FRAXA) 
and Fragile X-associated tremor/ataxia syndrome (FXTAS) were 
identified to be associated with expansion of CGG repeats on the 
X chromosome[9,10]. On other hand Fragile XE mental retardation 
(FRAXE) is caused by expansion of GCC on X chromosome[11]. 
Myotonic dystrophy (DM) and Spinocerebellar ataxia type 8 (SCA8) 
develop due to abnormal expansion of CTG repeats on the respective 
genes, whereas FRDA (Friedreich’s ataxia) is caused by expansion 
of GAA repeat in the frataxin gene located on X chromosome[12]. 
Interestingly, Spinocerebellar ataxia type 12 (SCA12) is also caused 
by the expansion of CAG repeats in the untranslated region of the 
gene, and therefore, it is not considered as a poly(Q) diseases[13].
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Figure 1 Schematic representation of the molecular events leading to manifestation of poly(Q) diseases. Expansion of CAG repeats causes mis-
folding of target protein and subsequent formation of protein oligomers and Inclusion Bodies (IBs). Formation of inclusion bodies leads to defects in 
protein folding machinery and axonal transport system, mitochondrial dysfunction and cellular apoptosis. Transportation of IBs in nucleus results 
in sequestration of various transcription factors and impairment of transcriptional machinery. (CBP- CREB binding protein; TBP- TATA binding 
proteins; Sp1- Specificity protein 1; TAFII130- Transcription factor II 130).
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form larger aggregates[16,17]. The propensity of the mutant proteins 
to form aggregate arises from their ability of self-interaction which 
is achieved above certain pathological threshold limit[18-20]. Mutated 
huntingtin protein (Htt) form β-pleated sheet conformations in-vitro 
similar to amyloid with a fibrillar structure[18]. Above the threshold 
limit, the poly(Q) protein are suggested to form polar zipper and 
associate with each other by hydrogen bonds[21]. Intriguingly, 
proteins with endogenous poly(Q) repeats confers instability in 
the conformation after acquiring additional poly(Q) in the existing 
stretch[19].
    In neuronal cell culture, the transfection of mutant Htt resulted 
in formation of IBs depending upon the length of poly(Q) repeats; 
with longer repeats forming more number of inclusion bodies[22,23]. 
Transfection studies suggest that truncated mutant Htt translocate into 
the nucleus rapidly and exhibit more tendencies to form aggregates 
than the full length of the protein[24,25]. The overexpression of both, 
full length and truncated form of ataxin-3 protein results in aggregate 
formation, cellular toxicity and neurodegeneration[26-29]. In rat striatal 
neurons, addition of expanded poly(Q) repeats with an inert protein 
such as poly(Q)-green fluorescent protein (GFP) fusion construct 
resulted in formation of inclusion bodies demonstrating that the toxic 
moiety lies in the elongated poly(Q) tract[30]. Interestingly, in all 
the cases of murine model of Huntington’s disease, the N-terminal 
fragment of the mutated Htt was always found to be associated with 
protein aggregates. Subsequent studies have demonstrated that co-
expression of the N-terminal of Htt protein along with its full length 
counterpart further accelerates the formation of inclusion bodies 
suggesting a clear role of N-terminal fragments in formation of 
protein aggregate[31-33].
    Interestingly, similar kinds of protein aggregates have been 
observed in the brain tissues of SCA1 patient and cell lines 
expressing mutant ataxin-1[34]. Likewise, transgenic mice expressing 
mutant ataxin-1 in the cerebellar region develop characteristics 
of ataxia phenotype with the formation of inclusion bodies[35]. In 
majority of poly(Q) disorders, the mis-folded proteins present in 
nuclear inclusion bodies are highly ubiquitinated[27,36]. Occurrence of 
the ubiquitinated form of mutant ataxin-3 aggregates have also been 
reported in neurons of SCA3 patients[37]. Similarly, ubiquitinated 
inclusions are also found in brain tissues of SCA2 and SCA7 
patients[38,39]. In SCA17, the nuclear inclusions associated with 
ubiquitin and TATA binding proteins (TBP) are found in putamen and 
frontal cortex[40]. In contrast, inclusion bodies in SCA6 patients were 
not ubiquitinated and were relatively cytoplasmic[41]. In spite of that, 
degeneration of Purkinje cells are quite prevalence in SCA6 patients 
and mutant CACNA1A transfected cell lines developed perinuclear 
inclusions resulting in apoptosis[41].
The poly(Q) repeats alters the function of calcium channel which 
could be one of the major factors driving the cellular degeneration[42]. 
Analysis of the brain cells of patients suffering from poly(Q) disorder 
revealed that in addition to the respective disease protein(s) the IBs 
were also comprised of several essential proteins/factors[43]. It appears 
that sequestration of essential proteins/ factors in IBs from their 
respective sites leads to altered homeostasis and cellular toxicity. The 
IBs gradually increase in size and grow as high molecular weight 
protein body and subsequently get transported into the nucleus by an 
unknown mechanism[43]. After reaching into the nuclear compartment 
it sequesters several transcription factors and results in alteration of 
transcriptional activity of the cell[43,44,45]. 
    Formation of inclusion bodies is a hallmark and common 
characteristic feature of all poly(Q) disorders[46,28]. Interestingly, in 
most of the poly(Q) diseases the flanking DNA sequence which 

surround the CAG repeat domain largely contribute on the dynamics 
of inclusion body formation[47,48]. In Huntington’s disease, first exonic 
sequence which flanks the CAG repeats is crucial for the formation 
and regulation of inclusion bodies[49]. Similarly, in SCA3, relative 
position of poly(Q) stretch and a highly conserved domain, Josephin 
determines the kinetics of inclusion body formation[47].
    Poly(Q) proteins exhibit intriguing characteristics of the ability 
to associate with other proteins harboring short non-pathogenic 
glutamine repeats by homotypic glutamate interactions[16,50]. 
Moreover, proteins with expanded poly(Q) repeats show tendency to 
accumulate in nucleus where presence of highly concentrated solutes 
allows it to interact with many transcription factors and cofactors[51,52]. 
In affected individual, the IBs grow in size with the progression of 
age and translocate themselves into nucleus. Inside the nucleus they 
bind to many more of glutamine rich transcription factors such as 
cAMP response element binding protein binding protein (CBP), TBP 
(TATA binding protein), TAFII130 and Specificity protein 1(sp1)
[53-58]. The binding and sequestration of transcription factors make a 
significant negative impact on the rate of cellular transcription. One 
of the major factors that caught great attention is CBP which is a key 
regulator of transcription[53-58]. 
    CBP (CREB binding protein) is one of the key transcription factors 
which interacts with several other factors and regulate transcription 
of crucial genes[59-61]. CBP core protein has histone acetyltransferase 
(HAT) activity which facilitates histone acetylation and opening 
of the histone chain around the DNA to make the DNA readily 
available for RNA polymerase[57,62]. In Huntington’s disease, the 
mutant Htt protein sequesters CBP into the inclusion bodies[53-55]. 
Moreover, CBP protein has also been found to localise with the 
inclusion bodies in post-mortem tissues, cell culture and poly(Q) 
disease models[63]. The sequestration of CBP by inclusion bodies 
leads to hypoacetylation and undermines the transcription activity 
depriving cell of the survival factors and ultimately cell is destined 
for apoptosis. The role of defective histone acetylation on poly(Q) 
pathogenesis is substantially documented by the fact that inhibitors 
of Histone deacetylase such as Suberoylanilide hydroxamic acid 
(SAHA), Trichostatin A (TSA) and Sodium butyrate alleviates the 
neurodegeneration in animal models and cell lines[53,64].
    In addition to the compromised function of several transcription 
factors as discussed above, mice model of SCA1 shows reduced 
transcriptional efficiency of six additional neuronal genes which 
are involved in signal transduction and calcium homeostasis[65]. The 
down regulations of these genes are evident in Purkinje cells much 
before the detectable phenotype of SCA1[65]. In case of SCA3, several 
inflammatory response genes show up-regulation while expressions 
of several cell-surface receptor genes are repressed[66]. It appears 
that the loss of normal function of ataxin-3 protein together with the 
toxic gain of functions by mutant ataxin-3 contribute to the disease 
pathogenesis[66].

M O D E L L I N G O F H U M A N P O L Y ( Q ) 
D I S O R D E R S  I N  D R O S O P H I L A 
MELANOGASTER 
Drosophila has emerged as an excellent system to model the human 
neurodegenerative disorders owing to the similarity between some 
of the fundamental cellular processes with humans and the fact that 
flies and humans share many structurally and functionally related 
gene families. It has been found that ~75% of the human disease 
causing genes have functional Drosophila homologues showing 
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overall identity ranging from 40% between homologues to as much 
as 80-90% between conserved functional domains[67,68]. Presence 
of extensive yet easily analyzable form of nervous system also 
makes it suitable for disease modelling. Several added advantages 
that Drosophila offers over other conventional model systems such 
as yeast, C. elegans and human cell cultures include its genetic 
tractability due to a short generation time and life-span, ease of 
maintaining large population within the confines of a laboratory, 
high fecundity, presence of balancer chromosomes, a well worked 
out developmental processes and anatomy, absence of meiotic 
recombination in males, relatively small genome contained on four 
completely sequenced and annotated chromosomes and ability to 
perform large-scale genetic screens to identify potential modifiers 
of known disease phenotypes[69]. In addition, availability of a large 
number of various mutant lines available at several Drosophila 
stock centres also makes it a popular model organism. The most 
advantageous aspect of poly(Q) disease modelling in Drosophila 
lies in the easy screening of genetic and chemical modifiers which 
subsequently help in designing novel therapeutic strategies. 
    Adult flies with their sophisticated brain and nervous system 
organized into specialized neural centres are capable of exhibiting 
complex behaviours such as learning and memory, much like the 
human brain. Interference in such well-coordinated motor behaviours 
serves as a highly sensitive readout of neuronal dysfunction and 
subsequent genetic analysis. Moreover, fly models are extremely 
useful while carrying out pharmacological screens for identifying 
novel therapeutic drug targets as they lack a blood brain barrier that 
can prevent the access of the drug to the central nervous system 
tissues[70]. Moreover, the response towards many drugs that act within 
the CNS is similar to the effects observed in mammalian systems[70]. 
The life cycle of Drosophila consist of four stages: embryonic, larval, 
pupal and adult stage. The larval stage can be further subdivided into 
3 stages namely 1st instar stage, second instar stage and third instar 
stage. The neurogenesis in Drosophila starts around 5 hours after egg 
laying[71,72]. The Central nervous system of Drosophila is composed 
of neurons and glial cells. The neurons are tightly associated with 
glial cells by a structure known as commissure[73]. In Drosophila 
various adult organs and anatomical structure develops from 10 pairs 
of imaginal discs and the genital disc. 
    One of the most valuable tools that Drosophila bestows for 
neurodegenerative disease modelling is the use of its compound 
eyes for easy and direct evaluation of neurodegeneration. The adult 
Drosophila eye is developed from the rudimentary organ called as 
eye imaginal disc[74,75]. The eyes are not indispensable for the survival 
and presence of regular hexagonal lattice of each ommmatidium 
gives easily recognizable phenotype even with the naked eye[76]. 
Expression of pathogenic poly(Q) protein containing 108 CAG repeat 
in eye perfectly mimics the degeneration of neuronal tissues as found 
in post-mortem brain of HD patient[72]. Interestingly, the development 
of disease could be traced from the third instar larval eye imaginal 
disc. The eye disc corresponds to the posterior region of a common 
imaginal disc which develops into adult eye and the anterior part 
develops to antennal structure. The morphogenetic furrow is the 
area where intense cell division and neuronal differentiation takes 
place[74,75]. 
    The compound eye of Drosophila is composed of individual unit 
called ommatidium. Each ommatidium is composed of different 
units of cells i.e. 2 primary cells, 6 secondary cells, 3 tertiary cells, 
8 photoreceptors cells and 4 cone cells. The 7th photoreceptors cells 
lie above the 8th photoreceptor cells, and therefore, not visible at 
the same visual focal plane[77]. In addition to eye tissues, Drosophila 

brain is also used as model organ in many of the neurodegenerative 
disorders. Drosophila adult brain is consists of about 10,0000 
neurons, organised into regions with specialized functions such as 
learning, olfaction, memory and vision[78,79]. The mushroom body is 
highly advanced information processing centre composed of about 
2,500 neurons with densely packed cell bodies know as Kenyon 
cells[80]. Mushroom body is homologous to the hippocampus of 
human brain and involved in olfactory memory and learning[80]. 
    Several approaches have been exploited so far to study 
neurodegeneration in Drosophila. Initially, the classical forward 
genetic approach was utilized wherein random mutations were 
created to select a phenotype showing brain degeneration which 
was then analysed with the aim of identifying the gene responsible 
for the mutant phenotype[81-83]. However, such screens either remain 
incomplete due to ignorance of redundant loci and epigenetic 
effects or difficult to undertake due to non-measurable phenotypes. 
Additionally a classical genetic approach takes significantly longer. 
Therefore, alternative reverse genetics-based approaches have been 
undertaken to elucidate pathogenic pathways and remedial strategies 
of neurodegenerative disorders. Moreover, the dominant nature of 
most of the mutant alleles of poly(Q) disorders suggested that perhaps 
these diseases could be modelled in Drosophila by introducing the 
mutant allele into the fly genome and producing transgenics. A binary 
system was used for this purpose which benefits from the property 
of the yeast transcriptional activator GAL4 protein to bind to a small 
upstream activator sequence (UAS) of genes to drive transcription. 
Foreign genes can be cloned into transposable P-element vectors 
under the control of a UAS sequence and crossed with transgenic 
flies expressing the yeast Gal4 gene in a tissue-specific manner[84]. 
In this context it is important to note that the transgene remains 
silent until crossed with a desired Gal4 line. Most commonly used 
promoters in case of neurodegenerative disorders include pan-
neuronal elav-Gal4 driver[85,86] and eye specific glass multiple reporter 
element (gmr) driver[87,88]. Neurodegeneration can be monitored either 
by measuring the loss of visible photoreceptors neurons in the eyes 
or by evaluating motor function by the climbing assay or by checking 
for the lethality of the organism. There are many advantages of using 
the UAS-Gal4 system for transgenic expression: first, the conditional 
nature of expression which prevents deleterious effects of constitutive 
expression of transgene; second, a single UAS transgenic line can be 
ectopically expressed in many different tissue types, depending upon 
the GAL4 line being used; third, the system is capable of yielding 
much higher levels of expression of the gene of interest as compared 
to direct promoter-fused transgenes.
    Expression of mutant form of AR, ataxin-1, ataxin-3 and Htt 
produces neuropathological condition reminiscent of human 
form[28,89,90]. The severity of poly(Q) diseases was also found to be 
dependent upon the length of poly(Q) repeat as found in human 
disease conditions. Moreover the progressive nature was also 
established in flies as the defects are observed only in mature larvae, 
pupal stage or in adult stages. The earliest SCA1 models generated 
in Drosophila were SCA1Q82 and SCA1Q30 transgenic lines[89]. 
The overexpression of SCA1Q82 produced a strong phenotype with 
complete degeneration of retinal structures and neuronal cell masses. 
Comparatively, expression of SCA1Q30 produces milder phenotype 
with partial degeneration of retinal structures. Interestingly, 
temperature mediated increased expression of SCA1Q30 was found 
to enhance the degenerative phenotypes[89]. Moreover, overexpression 
of wild type ataxin-1 was also found to induce neurodegeneration[89].
    Targeted expression of truncated form of SCA3 containing 78 
poly(Q) repeats induces neuronal degeneration in Drosophila eye[28]. 
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Figure 2 (A) Formation of Inclusion Bodies (IBs) in eye imaginal disc of GMR-Gal4 driven UAS-SCA3trQ78(S) third instar Drosophila larvae as detected by 
HA (Green) staining. (B) DAPI staining showing positioning nucleus. (C) Merged view of image A and B.

However, expression of normal length of 27 poly(Q) repeats did 
not produce any degenerative phenotype[28,91]. As depicted in Figure 
2, formation of inclusion bodies are equally evident in targeted 
Drosophila tissues as found in affected human brain. Occurrence 
of such inclusion bodies in Drosophila tissues was accompanied by 
enhanced cell death indicating implication of inclusion bodies in 
progression of neurodegeneration. The designing of Drosophila HD 
model was done by using truncated form of htt gene containing 1st 
exon with the expanded form of CAG repeats[92]. The expression of 
HttQ93 produces progressive loss of photoreceptors with subsequent 
aging[92]. The transgenic stocks containing Q0 and Q128 repeats were 
generated using the N-terminal fragments of Htt gene with first 588 
amino acids along with the caspase cleavage site. Targeted expression 
of Q0 in Drosophila eye did not produce any morphological 
defect, whereas the expression of Q128 reduces the photoreceptors 
depolarisation and loss of synaptic transmission[93]. The aggregates 
were also formed along with the axons which carry the synaptic 
stimulus to the CNS[93].
    Modelling of human poly(Q) and other neurological disorders 
in model organisms provides an ultimate tool for devising novel 
therapeutic strategies to suppress progression or manifestation of 
disease phenotypes[94,95,96]. Moreover, analysis of behavioural changes 
and neuropathological features could be studied in greater detail 
as the cellular processes of disease pathogenesis are completely 
recapitulated in most of the model system. It also facilitates in 
identification of modifier genes and pathways which could be 
potentially utilized as drug targets. The Drosophila model system 
is one of the oldest as well as one of the widely used model system 
for devising the testing paradigms such as genetic screens and 
chemical screens of poly(Q) disorders. Several genetic and chemical 
modifiers of human poly(Q) disorders have been identified utilizing 
Drosophila disease models. Moreover, some of such modifiers are 
being investigated and potential drug targets and to design novel 
therapeutic approaches.

CONCLUDING REMARKS
In brief, Drosophila provides a powerful genetic tool to investigate 
various aspects of human neurodegenerative poly(Q) disorders. 
However, given an exceptional model system and the varieties of 
tools available to study modified phenotypes, the precise mechanism 
which leads poly(Q) induced toxicity still stands as a debatable issue. 
Therefore, efforts should be given to unravel the molecular nature 
of the neurotoxic species arises in each disease type, and to decipher 

the key neuronal functions which get altered due to accumulation of 
toxic protein aggregates. Moreover, parallel comprehensive studies 
should be planed for not only to decipher the mechanistic details of 
disease pathogenicity but also to perform large scale screening for the 
designated molecules and genetic modifiers to assess their potential 
as the modifier of disease phenotypes, which could be verified further 
for their reproducibility in higher model systems. The Drosophila 
melanogaster has, thus, proved its worth in the field of neurobiology 
and will continue to contribute meaningfully towards novel 
discoveries to combat the devastating human neurological disorders.
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