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ABSTRACT
Autism spectrum disorders (ASD) are a heterogenous group of 
neurodevelopmental disorders with a significant rate of increase 
over the last years. T. gondii is a ubiquitous intracellular pathogen 
affecting approximately 30-50% of human population, with special 
preference to the central nervous system (CNS). Accumulating 
evidence suggest that latent chronic toxoplasmosis play a role in 
triggering and development of many psychiatric and neurological 
disorders, but so far there is no clear epidemiological link with its 
prevalence in ASD. The aim of the study was therefore to estimate 
the seroprevalence of chronic toxoplasmosis among autistic children, 
determine the changes in serum levels of IFN-γ and nitric oxide (NO) 
in T. gondii-positive and T. gondii-free patients, and evaluate the 
combined effect of both diseases on the Childhood Autism Rating 

Scale (CARS) score. Forty-six children with ASD (mean age 6.1 ± 2.2 
years; 41 boys, 5 girls) were studied for anti-T. gondii IgG antibody 
seropositivity (ELISA kit, DRG Int), and their serum IFN-γ (ELISA 
kit, Ray Biotech) and NO (one-step enzymatic assay) concentrations 
were measured. Chronic toxoplasmosis was found in 23.9% of the 
studied patients (8 males, 3 females), while among 50 age-matched 
control children (45 boys, 5 girls) 4% (2 boys) were T. gondii-
positive (χ2 = 8.11; p < 0.0043). Autistic children with toxoplasmosis 
had markedly increased both serum IFN-γ and NO levels (11- and 
5-fold median peak increases, respectively) compared with T. gondii- 
free participants. A statistically significant positive correlation was 
found between the serum IFN-γ and NO levels (r = 0.79, p < 0.001). 
These molecular disturbances may exert harmful effects on further 
development of the CNS in the infected individuals, although no 
marked difference in the CARS score was detected, probably because 
of young age and immune function maturation of the participants. 
The obtained results strongly suggest that latent chronic T. gondii 
infection have an important impact on triggering and development of 
ASD, at least in a subset of autistic children, and this requires some 
modification(s) of its diagnostic procedures and treatment regimens.
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INTRODUCTION
ASD
This clinical entity is a complex mutifactorial neurodevelopmental 
disorder with genetic, immunological, and environmental 
contributions[1]. It is characterized by reduced sociability, 
abnormalities in verbal and nonverbal communication, restricted 
stereotyped interests and repetitive behaviors[2]. Manifestations 
onset starts in the first 3 yrs of life[3]. The prevalence of ASD 
among children aged 8 years has risen in the U.S. dramatically 
by approximately 78% during 2002-2008, and for 2010, the 
overall prevalence of ASD among The Autism and Developmental 
Disabilities Monitoring Network sites was 14.7 per 1000 children 
(one in 68)[4-6]. Approximately one in 42 boys and one in 189 girls 
were found to have this disorder, and the median age of earliest ASD 
diagnosis was 53 months[5]. Recently, Blumberg et al[7] suggested 
that much of the prevalence increase from 2007 to 2011-2012 for 
school-age children was the result of diagnoses of children with 
previously unrecognized ASD. In the UK, prevalence of parent-
reported data collected in 2008-2009 for 14,043 children was even 
higher compared to earlier UK and U.S. estimates and showed that 
1.7% of children were reported as having ASD (95 % CI 1.4-2.0) at 
mean age 7.2 yrs (SD = 0.2; range = 6.3-8.2 yrs)[7a]. A statistically 
positive association found between autism prevalence and childhood 
vaccination uptake across the U.S. population seems to play an 
important role because the higher the proportion of children receiving 
recommended vaccinations, the higher was the prevalence of autism 
or speech and language disorders (a 1% increase in vaccination 
was associated with an additional 680 children having these 
abnormalities)[8]. Moreover, a highly significant correlation was 
demonstrated between the increasing number of vaccine doses and 
increasing infant mortality rates (r = 0.992; P < 0.0009), especially 
that the childhood immunization schedule in the USA specified 26 
vaccine doses for infants during the first year of life (most in the 
world)[9]. 
    Despite decades of intensive research, the pathogenesis of autism 
still remains unknown. Several studies proposed infectious, cytokine, 
and autoimmune-related etiologies. It was suggested that chronic 
viral and bacterial infections and immunological abnormalities 
associated with ASD may contribute to the manifestations and 
severity of the disease[10]. A number of environmental factors and 
associated clinical abnormalities, as well as immune irregularities 
have been linked to pathophysiology of ASD and neuroglial 
activation/neuroinflammation in the brain of patients with 
autism[6,11-13]. Markedly lower subpopulation of CD4+ and CD8+ 
lymphocytes together with imbalance between TH1 and TH2 type 
cytokines skewing more towardsTH2 arm have been demonstrated 
in children with ASD[6,14,15]. The serum immunoglobulin levels were 
also found to be disturbed because total protein was significantly 
increased in autistic children, including higher albumin and gamma 
globulin concentrations, as well as increased serum IgG, IgG2 
and IgG4 levels that probably was associated with an enhanced 
susceptibility to infections[16]. Both postmortem and neuroimaging 
investigations in patients with ASD showed abnormalities in various 
brain regions including the frontal cortex, cerebellum, hippocampus, 
the amygdaloid nucleus and cerebello-thalamo-cortical pathways[17].
    Accumulating evidence indicates that in schizophrenia and autism, 
inflammatory cytokines including IL-1β and IL-6 have a role in 
onset and progress of neuropsychiatric symptoms probably via 
perinatal inflammation[18-20]. These findings may be in line with the 
enhancement of intracellular replication of T. gondii by IL-6 and 
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reversal of IFN-γ-mediated toxoplasmacidal activity, as well as with 
the markedly higher prevalence of anti-Toxoplasma antibodies in 
patients with autoimmune diseases[21-24]. It appeared that antibody 
against IL-6 reduced inflammation and numbers of cysts in the brains 
of mice with toxoplasmic encephalitis, while the antibody directed 
against IFN-γ had an opposite effect[22]. In turn, Shapira et al[24] 
demonstrated that serum anti-T. gondii IgG antibodies were detected 
in 42% (637/1514) of patients with autoimmune diseases versus 
29% (127/437) of controls (P < 0.0001). Potential pathomechanisms 
responsible for development of several neuropsychiatric diseases 
and changes in behavior also include an important role of tryptophan 
metabolism and its metabolites, such as for example melatonin[25], 
and hypothalamic-pituitary-adrenal axis function, both known to be 
affected during chronic T. gondii infection[26]. 

T. gondii
This intracellular pathogen believed to be a global threat[27-30], 
chronically infects approximately 30-50% of the human population, 
and ophthalmoimmunologists[31] suggested that even some 6 billion 
people are chronically infected with the parasite. Unrecognized 
ingestion of T. gondii oocysts leads to congenital toxoplasmosis 
and causes epidemics in North America[32]. Recent study by Flegr 
et al[30] showed that the seroprevalence of toxoplasmosis correlated 
with various specific disease burden and therefore may be a 
neglected triggering factor responsible for development of several 
clinical entities. Extensive T. gondii host/pathogen interactome 
enrichment involving approximately 3000 host genes or proteins 
was found in nine psychiatric or neurological disturbances[10], and 
it was demonstrated that the protozoan ingested and digested host 
cytosolic proteins using cathepsin L and other proteases within its 
endolysosomal system[33].
    Evans et al[29] found that in rats T. gondii cysts were randomly 
distributed throughout the 53 analyzed forebrain regions with 
individual variation in cysts localization, beginning 3 weeks post-
infection. This can explain individual differences in the effects of 
the parasite on behavior of the animals, especially that the immune 
response to cysts was striking. In the brain of mice, persistent 
infection with the parasite caused ventricular dilatation, inflammation, 
neuronal injury, and altered cellular functions associated with 
neurological and behavioral abnormalities[34,35]. Localization of the 
parasite cysts in different regions of murine brain and brain cells 
along with time and the number of cysts after inoculation were 
presented in Tables 1-4[36-38]. The development of behavioral changes 
was paralleled by the preferential persistence of cysts in defined 
anatomic structures of the brain, depending on the host, strain of the 
pathogen, its virulence, and route of inoculation[39-49]. 
    T. gondii tachyzoites may invade different type of brain cells 
including neurons, astrocytes, microglial cells, and Purkinje cells in 
cerebellum. Intracellular tachyzoites manipulate signaling pathways 
and several signs for transduction mechanisms involved in apoptosis, 
immune cell maturation, and antimicrobial effector functions[50]. 
Wang et al[51] found that the parasite induced apoptosis of neural stem 
cells via endoplasmic reticulum stress pathway. It was demonstrated 
that in neurons infected by T. gondii not only parasitic cysts but also 
the host cell cytoplasm and some axons were stained positive for the 
parasite antigens, thus supporting the notion that it may interfere with 
neuronal function[39,49]. 
    Among infections, toxoplasmosis has had so far no clear 
epidemiological link with its prevalence among autistic children 
established except for the few recent reviews suggesting that the 
manifestations, biochemical disturbances and brain morphological 
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findings in autism are associated with T. gondii infection[52-54]. The 
aim of study was therefore to determine the seroprevalence of 
chronic toxoplasmosis in children with ASD admitted to the Medical 
Genetics Unit, Pediatric Hospital, Ain Shams University Hospital, 
and to estimate its effect on changes in serum IFN-γ and NO levels, 
and the Childhood Autism Rating Scale (CARS) values.

Brain region

Cerebral cortex
Hippocampus
Thalamus
Hypothalamus
Amygdala 
Caudate putamen
Cerebellum

Table 1 Preferential localization of T. gondii ME49 strain cysts in different 
regions of murine brain at 2 and 6 months post inoculation (acc. to Melzer 
et al[36]; with own modification

1 Total number of cysts observed=67; 2 Total number of cysts observed=32.

University Hospital, Cairo, Egypt, from January 2010 to January 
2013. The diagnosis of autism was established by CARS and 50 age-
matched healthy children were included as the control group. This 
investigation has been carried out in accordance with the code of 
ethics of the World Medical Association (Declaration of Helsinki) 
for experiments involving humans. The study was approved by 
the Research Ethics Committee, Faculty of Medicine, Ain Shams 
University, and informed consents were obtained from parents of all 
patients. 
    Five milliliters of blood were taken under sterile conditions after 
overnight fasting from all participants. The sera were then separated 
and stored at -20ºC until the analysis for anti-T. gondii IgG antibodies 
and serum INF-γ and NO levels determination. 

Estimation of serum anti-T. gondii IgG antibodies 
All serum samples were tested for IgG anti-T. gondii antibodies using 
commercially available enzyme linked immunosorbent assay (ELISA) 
kit (DRG International, Inc., USA). All reagents and controls were 
supplied by the manufacturer. Serum samples, negative control, 
positive control and calibrators were diluted (1:40). Then, 100 µl 
of diluted sera, controls and calibrators were dispensed into the 
appropriated wells of microtiter plate coated with purified T. gondii 
antigen and incubated at 37℃ for 30 min. Horseradish peroxidase-
conjugated antibody (100 μl) was then added to react with the 
bound antibody. Substrate (100 μl) for peroxidase was added and 
the reaction was stopped by stop solution (100 μl). The intensity of 
the color was measured at 450 nm in an ELISA reader. The mean 
of duplicated cut-off calibrator value (32 IU/mL), positive control, 
negative control and serum samples were calculated. T. gondii index 
of each determination was calculated by dividing the mean value of 
each sample by the calibrator mean value. A sample was considered 
positive for IgG when a T. gondii index was equal or greater than 1.0 (> 
32 IU/mL). A negative reaction corresponded to T. gondii index less 
than 0.90 (≤ 32 IU/mL), a positive reaction to T. gondii index of 1.00 
or greater (> 32 IU/mL), and an equivocal result corresponded to T. 
gondii index between 0.91-0.99. 

Detection of serum INF-γ levels
All serum samples were tested for serum INF-γ level using 
commercially available enzyme linked immunosorbent assay (ELISA) 
kit Bio (Cat#: ELH-IFN gamma-001) Ray Biotech, Inc. Serum 
samples and standards were diluted, then 100 µl of diluted sera and 
standards were dispensed into the appropriated wells of microtiter 
plate and incubated at room temperature for 2.5 hrs or overnight. 
Biotin antibody (100 μl) was then added to each well incubated at 
room temperature for 1 h. Streptavidin solution (100 μl) was next 
added to each well and incubated at room temperature for 45 min. 
100 μl of TMB one-step substrate reagent was then added to each 
well incubated for 30 min, and 50 μl of stop solution were added to 
finish the reaction. The intensity of the color was measured at 450 
nm immediately in an ELISA reader, and the concentration was 
calculated on the standard curve (in pg/mL).

Determination of serum NO levels
Serum nitrate concentration as a stable end-product of nitric oxide 
was measured by an endpoint one-step enzymatic assay using nitrate 
reductase as described by Bories & Bories[55]. The concomitant 
reduction of nitrate to nitrite by NADPH was monitored by the 
oxidation of the coenzyme and the decrease in absorbance at 340 nm. 
The NO concentrations were measured in μM. The method was linear 
from 5 to 200 μM nitrate in serum. The median (range) concentration 

Two months after 
inoculation 1

34
10
5
6
25
12
8

Six months after 
inoculation 2

57
25
-
3
9
6
-

Group of mice

Earlier stage infection
Intermediate stage infection
Late stage infection

Table 2 The number of cysts load in brain tissue and congenital 
transmission rate from the offspring of mice (acc. to Wang et al[37]; with 
own modification).

Each group of mice was infected with 5 cysts of T. gondii by oral 
inoculation on the 5th, 10, and 15th day after gestation. Results are 
expressed as the mean number of cysts collected from each group ± SD, 
generated by using one-way ANOVA: 1 p < 0.01 vs late stage infection 
and  2 p > 0.05 vs intermediate stage infection group. The congenital T. 
gondii transmission rate is shown at the age of 12 weeks after birth in the 
offspring from the infected group.

Congenital T. gondii 
transmission rate (%)
94.74
90.48
91.67

Number of cysts 
in brain
224 ± 59 1, 2  (n = 18)
202 ± 44 1 (n = 19)
134 ± 31 (n = 22)

Cell type

Neurons
Astrocytes
Microglia

Table 3 Infection rates of different cell types from embryonal rat cortices 
(E15) after in vitro infection with T. gondii tachyzoites (acc. to Lüder et al[38]; 
with own modification.

1 Determined 48 hrs post infection by double immmunofluorescence 
(at least 100 parasitophorous vacuoles were examined for each 
determination). Data represent mean ± SD from three independent 
experiments. mAB, monoclonal antibody. GFAP, glial filament acidic 
protei.

Rate of T. gondii 
infection 1

9.5 ± 1.1%
9.7 ± 3.3%
31.5 ± 5.9%

mAb for host cell 
identification
Anti-Nf 200 kDa
Anti-GFAP
Anti-CD71

Frequency of 
cell type 1

88.0 ± 1.3%
7.9 ± 2.1%
4.1 ± 0.9%

Intracellular 
replication (% PV) 1

1-2 parasites/PV 
4-8 parasites/PV 
16-32 parasites/PV 
> 32 parasites/PV 
Morphology of 
T. gondii 

Table 4 Replication and morphology of T. gondii in different cell types 
from embryonal rat cortices (E15) (acc. to Lüder et al [38]; with own 
modification).

1 Determined 48 hrs post infection by double immunofluorescence (at least 
100 PV were examined for each determination). Data represent mean ± SD
 from three independent experiments. PV, parasitophorous vacuole. 

Microglia 
93.1 ± 4.5 
8.9 ± 4.5 
0 
0 
Often 
degenerated 

Neurons 
66 ± 2.6 
30 ± 2 
4.3 ± 1.5 
0 

Normal 

Astrocytes 
67.2 ± 5.0 
26.2 ± 1.2 
5.3 ± 2.9 
1.3 ± 1.2 

Normal 

PATIENTS AND METHODS
The present study was performed in 46 autistic children who were 
admitted to the Medical Genetics Unit, Pediatric Hospital, Ain Shams 
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in serum of 20 healthy individuals was 16 (0-42) μM[55].

Study of the CARS
The CARS is a widely used test for screening and diagnosis of 
autism. The scale consists of 15 items assessing the severity of 
behaviors associated with autism. Total scores can range from 
15 to 60 according to the severity. The items in the scale include: 
relationship to people, imitation, emotional response, body use, 
object use, adaptation to change, visual response, listening response, 
perceptive response and usage, fear or anxiety, verbal communication, 
non-verbal communication, activity level, consistency and level of 
intellectual response, and finally the general impressions[56].

Statistical analysis 
The obtained data were coded, tabulated and introduced to a PC 
using the Statistical Package for Social Science (SPSS) for Windows 
version 17. The Chi-square was used to analyze the frequency of 
anti-T. gondii IgG antibodies in the study groups. The serum INF-γ 
and NO levels in the studied patients have been expressed as a 
nonparametric variable and were compared between the groups using 
the Mann-Whitney test to establish statistically significant differences 
at p < 0.05 or less. Results were presented as means ± SD.

RESULTS
Our study demonstrated that 11 (23.9%) out of 46 autistic children 
(41 males, 5 females) were positive for serum anti-T. gondii IgG 
antibodies as compared with 2 patients (4%) with toxoplasmosis 
found among 50 control children (χ2 = 8.1143; p < 0.004392). The T. 
gondii positive group of autistic patients was significantly older than 
the seronegative group (mean age 7.56 vs 4.69 yrs, respectively; P < 
0.05) (Table 5), and among toxoplasmosis positive participants there 
were 8 (73%) boys and 3 (27%) girls (Table 6). 
    Autistic children with toxoplasmosis had markedly increased 
both serum IFN-γ and NO concentrations (11- and 5-fold increases, 
respectively) as compared with the values obtained in patients 
without toxoplasmosis, and a highly statistically significant positive 
correlation was found between serum IFN-γ and NO levels (r = 0.79, 
p < 0.001) (Tables 7 and 8; Figure 1). 
    The CARS scores showed no marked difference between the 
autistic children with and without toxoplasmosis (Table 9). 

DISCUSSION
The study for the first time showed that 23.9% of the studied autistic 
children had chronic toxoplasmosis compared with 4% of the age-
matched controls (P < 0.00439). This finding strongly support recent 
suggestions of Prandota[52-54] that T. gondii play an important role in 
the pathogenesis and clinical course of autism spectrum disorders, at 
least in a subset of individuals with this clinical entity.

Increased serum IFN-γ levels in autistic children with 
toxoplasmosis
T. gondii- positive autistic children had significantly increased serum 
IFN-γ concentrations as compared with Toxoplasma-free patients  
(Table 5). IFN-γ, a classic T cell cytokine produced also in the brain, 
influences more than 200 genes[56a], and its overproduction play an 
important role in development of neurodegeneration[56b,56c].
    ASD. Children with autism have peripheral and central 
inflammation[2]. Neuroglial activation and neuroinflammation 
processes[12] with significantly increased plasma proinflammatory 

Study group
T. gondii-(+)
T. gondii-negative

Table 5 Age of autistic children with and without toxoplasmosis.

Results are means ± SD. Statistically significant difference at p < 0.05.

P value
< 0.05

Age (yrs)
7.56 ± 2.24
4.69 ± 2.19

T-test
3.3

Sex

Boys

Girls

Total

Table 6 Sex distribution in autistic children with and without 
toxoplasmosis.

P value

< 0.05

No of pts
%
No of pts
%
No of pts
%

T. gondii-(+)
8
19.5
3
60
11
23.9

T. gondii  negative
33
80.5
2
40
35
76.1

χ2

4

Total

41
100
5
100
46
100

Study group

Study 
group

Toxo-(+)

Toxo- 
negative

Table 7 Serum INF-γ concentrations in autistic children with and without 
toxoplasmosis.

Median
Percentiles
25
75
Median
Percentiles
25
50

Serum 
IFN-γ levels
(pg/mL)
2202.52

2135.65
2375.96
194.36

158.44
291.86

Mann-
Whitney 
test

8.000

Asymptomatic 
significance 
(2- tailed)

0.000 2HS

95% CI 1

L .000
U .030

1 CI, Confidence Interval. 2 HS, highly significant difference between the 
groups. L and U, lower and upper limits of significant values.

Study 
group

Toxo-(+)

Toxo- 
negative

Table 8 Serum NO concentrations in autistic children with and without 
toxoplasmosis.

Median
Percentiles
25
75
Median
Percentiles
25
50

Serum 
NO levels
(μM)
41.00

33.83
57.10
8.20

6.83
10.08

Mann-
Whitney 
test

10.000

Asymptomatic 
significance 
(2- tailed)

0.000 2HS

95% CI 1

L .000
U .030

1 CI, Confidence Interval. 2 HS, highly significant difference between the 
groups. L and U, lower and upper limits of significant values.

Study group
T. gondii-(+)
T. gondii-negative

Table 9 CARS score in autistic children with and without toxoplasmosis.
P value
> 0.05

CARS score (mean ± SD)
32.90 ± 7.02
30.69 ± 4.36

T-test value
1.02

and anti-inflammatory cytokines (IFN-γ, TNF-α, IL-1β, IL-1RA, IL-
5, IL-6, IL-8, IL-12(p40), IL-12(p70), IL-13, IL-17, GRO-a) and 
evidence of altered T cell responses (in 2-5 yrs old children with 
autism, following phytohemaglutinin (PHA) stimulation of peripheral 
mononuclear cells, the frequency of CD3+, CD4+ and CD8+ T cells 
were markedly reduced), disturbed innate and adaptive immune 
responses in the brain, cerebrospinal fluid, and other tissues, have 
been reported[3,13,57-63]. Natural killer (NK) cells function also was 
found to be decreased[64]. Enhanced generation of proinflammatory 
cytokines was associated with impaired behavioral outcome, while 
production of TH2 type of interleukins resulted in better cognitive and 
adaptive function[63]. 
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    Potential roles for altered tryptophan metabolism and its 
metabolites such as serotonin (increased in the brain, blood, serum, 
platelets, and urine of autistic patients), melatonin (decreased in 
serum), kynurenine pathway metabolites, in the etiology of autism 
and schizophrenia, also have been taken into consideration[25,65-74] 
(Figures 2 and 3). Recently, Schwartz[75] even suggested that 
aberrant tryptophan metabolism may be considered as the unifying 
biochemical basis for development of ASD. In mice, tryptophan 
2,3-dioxygenase (TDO) was found to be a molecular key 
biomodulator of physiological neurogenesis and anxiety-related 
behavior[76,77]. In this context, decreased tryptophan metabolism 
found in patients with ASD[72] may reflect a defense reaction of the 
host since IFN-γ blocked growth of the parasite by inducing the host 
cells to degrade tryptophan[78]. This is in line with the finding that 
tryptophan loading induced oxidative stress because its metabolites 
generated free radicals[79], known to affect intensity of pathological 
oxidative damage and redox signalling. Finally, it should be noted 
that the individuals with schizophrenia had either IgG or IgM class 
antibodies reactive to T. gondii proteins[19,80,81]. 

100.000

80.000

60.000

40.000

20.000

0.000

N
O

0.000         500.000      1000.000     1500.000      2000.000    2500.000      3000.000

                IFN

(μMol/L)

Figure 1 Relat ionship between serum IFN-γ (pg/mL) and NO 
concentrations in the studied autistic children.

Figure 2 Various pathways of the essential amino acid tryptophan metabolism.  About 99% of the dietary tryptophan is metabolized along the kynurenine 
pathway (red arrows). Alternative pathways are the conversion of tryptophan to 5-hydroxytryptamine (5-HT) and then to melatonin, or to tryptamine 
and then to the kynuramines (or kynurenamines). N1-acetyl-5-methoxykynuramine is a metabolite deriving from melatonin by mechanisms involving 
free radicals, exhibits potent antioxidant properties exceeding those of its direct precursor N1-acetyl-N2-formyl-5-methoxykynuramine, a biogenic 
amine generated through either an enzymatic or a chemical reaction (free radicals) pathway. 3-HAO, 3-hydroxyanthranilate oxidase; IDO, indoleamine 
2,3-dioxygenase; KAT, Kynurenine aminotransferase; MAO, monoamine oxidase; QPRT, quinolinic-acid phosphoribosyl transferase; TDO, tryptophan 
2,3-dioxygenase (acc. to Stone & Darlington[74]; with own modification)
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    T. gondii. The parasite infects a variety of host brain and other 
tissue cells, and IFN-γ-mediated immune responses control the 
parasite in both phagocytic and non-phagocytic cells through at least 
6 different mechanisms depending on the types of cells responding to 
this cytokine. Such effector functions involving several neurobiologic 

Figure 3 Interrelationships between indoleamine 2,3-dioxygenase (IDO) 
and nitric oxide synthase (NOS) in macrophages or glial cells, and the 
potential interactions with neurons by means of N-methyl-D-aspartate 
(NMDA)-receptor-induced nitric oxide (NO) formation. Arg, arginine; 
3-HAA, 3-hydroxyanthranilic acid; 3-HK, 3-hydroxykynurenine; IFN-γ, 
interferon-γ; IL, interleukin; Kyn, kynurenine; KynA, kynurenic acid; LPS, 
lipopolysaccharide; mRNA, messenger RNA; iNOS, inducible nitric oxide 
synthase; TGF-β, transforming growth factor-β; TNF-α, tumor necrosis 
factor-α; Trp, tryptophan; xA, xanthurenic acid. The broken lines represent 
possible reactions (acc. to Stone & Darlington[74]; with own modification). 

Table 10 Several defense mechanisms that allow T. gondii to escape the effects of an active host immune response, as well as various endogenous and 
exogenous mediators/ substances that may interfere with the host defense against the parasite (acc. to James[85], with own modification).

Through induction of (and/or use/interference with):
IL-4, IL-10, NO (negative effects on antigen presentation and cell proliferation, PGE2 

1 (decreases IL-2 and IFN-γ 
production)
IL-10, TGF-β 2, IL-4 (±) 2, IL-13 (±) 3, NO (inactivation of NOS and IDO), 3-HAA 4, different drugs, foods and food 
additives (these substances cause production of NO via the conversion of L-arginine to citrulline and NO by NOS, 
which results in suppressing NOS activity), MAO inhibitors (interference with dietary tryptophan-kynuramine-5-
hydroxykynuremine metabolic pathway). Iron down-regulates macrophage NO production stimulated by IFN-γ 
plus LPS, although, on the other hand, iron deprivation is one of the mechanisms mediating anti-Toxoplasma 
activity. These abnormalities are consistent with the impaired iron homeostasis in the periaqueductal gray matter 
reported in the patients with episodic migraine and chronic daily headache. PGE2 and LTB4 inhibit NOS type 2 
expression, iNOS synthesis and expression, and NO production in hepatocytes and macrophages. And vice versa, 
NO mediates IL-1-induced PGE2 production by vascular smooth muscle cells. 
NO may serve as a molecular trigger of the parasite stage conversion, either by selecting for parasites that 
spontaneously convert to preferential use of NO-insensitive anaerobic metabolism or by actively forcing the 
parasite to adopt this energy-generating mechanism to survive. 
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Inhibition of:
TH1-related IFN-γ 
production

IFN-γ-mediated NO 
generation

NO antiparasitic effects 

1 PGE2 produced by human monocytes during T. gondii infection suppresses TH1 cytokine production and induce TH2 cytokines, such as IL-10[98-100], and 
decreases NO production by activated microglia[100,101]. PGE2 (as well as PGE1 and PGE2a) are potent activators of the N-acetyltransferase enzyme, which 
synthesizes melatonin from 5-HT and stimulates melatonin release from the pineal gland, and conversely, melatonin and its kynuramine metabolites are 
potent inhibitors of prostaglandin synthesis[74,102]. IDO, indoleamine 2,3-dioxygenase, the first enzyme of the kynurenine pathway, the main pathway for 
tryptophan metabolism, is powerfully induced by IFN-γ; inhibition of NOS consequently results in an exaggerated output of kynurenines. 
2 The anti-inflammatory cytokines TGF-β and IL-4 suppress IDO activity in human monocytes and fibroblasts[78], which is consistent with IDO metabolic 
pathway being a significant contributor to the pro-inflammatory system[74]. Enhanced IDO activity was found in vivo in diseases that were associated 
with chronic stimulation of TH1-mediated immunity, such as the CNS T. gondii infection[103,104]. Metabolites of tryptophan, L-kynurenine, picolinic acid 
and quinolinic acid, were found to inhibit proliferation of CD4+, CD8+ T lymphocytes and NK cells, thus affecting immune response of the host to the 
parasite[104]. NO can directly inactivate NOS[105]. 
3 IL-13 exerted dual effects, i.e. a decreased and an enhanced NO production by LPS-stimulated GMC-stimulated factor-derived bone marrow macrophages. 
4 3-HAA (3-hydroxyanthranilic acid), a metabolite of dietary tryptophan metabolic pathway, inhibits NOS enzyme activity, the expression of NOS 
mRNA, and activation of the inflammatory transcription factor NF-κB[106]. It must be added that tryptophan metabolites, such as quinolinic acid, 
3-hydroxykynurenine, and 3-HAA are known to have the ability to generate free radicals, which may exert an antitoxoplasmatic effect[79].

biomechanisms affecting T. gondii survival in the host cells include: 
(1) mechanisms mediated by an IFN-γ responsive gene family. 
Several of these proteins, including IGTP (IFN-γ-regulated gene), 
may be involved in the processing and trafficking of cytokines and/or 
antigens. IGTP is an essential mediator of specialized antimicrobial 
activities of IFN-γ; (2) production of NO by inducible NO synthase 
(iNOS); (3) production of various cytokines (TNF-α, IFN-γ, IL-
1β, etc.); (4) tryptophan degradation by the enzyme indoleamine 
2,3-dioxygenase (IDO) and TDO; (5) limiting the availability of 
intracellular iron to the parasite; (6) production of reactive oxygen 
species (ROS), reactive nitrogen intermediates (RNI)[82-84]. Several 
molecular, biochemical and immune host defense mechanisms 
associated with T. gondii infection were presented in Tables 10 and 
11[44,85].
    The IFN-γ cytokine is central in resistance to T. gondii at both acute 
and chronic stages of infection, as demonstrated by cytokine depletion, 
cytokine repletion, and gene knockout studies[117-120]. Cell sources of 
IFN-γ include: NK cells[121-125] (promotes iNOS expression[126]), CD4+ 
T cells[127] (promotes p47 GTPase-mediated killing of T. gondii[128,129]), 
and CD8+ T cells[127] (promotes tryptophan degradation[78,114,130,131]). 
Virulence of the parasite was associated with distinct dendritic cell 
(DC) responses and reduced numbers of activated CD8+ T cells[132]. 
Although IFN-γ may play multiple roles in resistance to the pathogen, 
macrophage activation is generally believed to be the critical effector 
function[120,133,134] because activation of these cells resulted in iNOS 
gene induction and synthesis of moderate levels of RNI generated 
during degradation of arginine into citrulline by iNOS[85,120]. Synthesis 
of RNI was also highly enhanced by certain microbial products, as 
well as by triggering macrophage TNF-α synthesis[85,120]. Infection 
with T. gondii stimulated also tryptophan metabolism along the 
kynurenine pathway, which contains several neuroactive metabolites, 
including 3-hydroxykynurenine, quinolinic acid and kynurenic 
acid[78,114,130,131], and cytokines mediated regulation of IFN-γ-induced 
L-tryptophan biodegrading enzyme, IDO[135] (Figure 2).
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    It should be noted that T. gondii disproportionately infected DCs 
and macrophages, and both these infected cell types displayed an 
activated phenotype characterized by enhanced levels of CD86 
compared to cells that had phagocytosed the pathogen[125]. DC 
were required for optimal CD4+ and CD8+ T cell responses, and the 
phagocytosis of heat-killed or invasion-blocked parasites was not 
sufficient to induce T cell responses[125]. 
    In summary, several cytokines such as IFN-γ, TNF-α, and NO, 
protect brain cells and neurons from infection, and part of this 
protection involving killing, inhibition of growth and intracellular 
multiplication of the parasite, may occur also through the promotion 
of cyst formation, however particularly complex interplay of these 
molecular compounds released by all the cells provide protective 
mechanism involved in the response to T. gondii infection. On the 
other hand, IFN-γ and some other cytokines produced by glial cells, 
neurons, T lymphocytes or NK cells also play an important role in 
development of neurodegeneration and oxidative stress. 

Increased serum NO concentrations in autistic children with 
toxoplasmosis
Our study showed that autistic children with toxoplasmosis had 
markedly increased serum NO levels as compared with Toxoplasma 
-free participants. This is in agreement with literature data 
reporting that patients with autism have significantly increased NO 
production[136-139]. Higher plasma nitrite (NO2-)/nitrate (NO3-) levels 
(total NO, recovery from plasma approximately 87%, with 17,6% 
of the total level as nonstable nitrite[140]) were also found in children 
with autism compared with controls[136]. Higher NO-derived reactive 
nitrogen oxides (NOx) concentrations demonstrated in red blood 
cells of autistic patients compared to age- and sex-matched normal 
controls, along with enzymatic evidence of NO-related oxidative 
stress[137], were associated with mitochondrial dysfunction[141]. 
The induction of a high-output inducible enzyme NOS (iNOS) is 
triggered primarily by IFN-γ, in combination with TNF-α and IL-
1β, or endotoxin[138,142,143] (Figure 4). It must be noted that autistic 
children showed markedly enhanced production of the cytokines 
IFN-γ, TNF-α and IL-1β compared to controls[144,145].
    In vivo, concentrations of NO approach 80 μM[146], therefore 
locally the levels of NO may be orders of magnitude greater[147]. 
High levels of NO (about 1 mM) and more prolonged exposure can 
reversibly or irreversibly damage the mitrochondrial iron-sulphur 
centers[148]. In the central nervous system, NO at physiological 
concentrations acts as an intracellular messenger, but at higher 
concentrations it can initiate a neurotoxic cascade leading to cell 
death[149-152]. NO has been implicated in a wide range of pathological 
processes in the brain and other tissues, including neurodegenerative 
diseases, stroke, and ischemia[153,154]. It was suggested that a number 
of the physiological and pathological effects of NO may be mediated 

by suppression of mitochondrial functions, particularly by inhibition 
of cytochrome oxidase. Brown and his group[155,156] showed that 
astrocytes and macrophages activated by cytokines and endotoxin 
to express the inducible NO synthase produced up to 1 μM NO and 
inhibited their own cellular respiration and that of coincubated cells 
via the NO inhibition of cytochrome oxidase. Moreover, NO caused 
glutamate release from synaptosomes via inhibition of synaptosomal 
respiration[42], and killed cerebellar granule neurons by excitotoxic 
mechanisms[151] (Table 12). 
    Prolonged exposure of cells to NO might cause cell death 
by opening a mitochondrial permeability transition pore and 
subsequent activation of caspases[10], and the mode of cell death as 
proapoptotic or pronecrotic[158] (Table 13) seemed to be determined 
by cellular level of ATP[151]. (Nb. autophagy is physiologically 
essential for mitochondrial clearance in mature T lymphocytes, 
because it contributes to the elimination of intracellular pathogens 
as well as the major histocompatibility complex class II molecules 
cross-presentation of endogenous antigens[159]). Excess of NO 
caused increased intestinal permeability (“leaky gut”)[160,161], 
prevalent in autism[162], since this biomolecule mediated IFN-γ-
induced hyperpermeability in cultured human intestinal epithelial 

Table 11 Efficiency of T. gondii infection and cytokine/NO release in primary cultures of brain cells (acc. to Fagard et al[44]; with own modification).
Astrocytes 
100 1 
IFN-γ, IL-1, IL-6, GM-CSF, NO 
Yes 
Large (~50 μm) 
100 μm (harbor several 
dozen tachyzoites) 
Encystation 
Low 
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Parameters 
Relative efficiency of infection 
Cytokine release 
Cyst formation 
Size of cysts 

Size of brain cells 

Effect of IFN-γ and TNF-α 
Inducible NOS 

Microglial cells 
50 1

IFN-γ, IL-10, IL-6, TNF-α, NO 
Limited 
Small (~10 μm) 

5-10 μm 

Parasite killing 
High 

Neurons 
5-15  1

TNF-α ?, NO, glutamate 
Yes 
Small (~ 10 μm) 
10-15 μm 2 (contain only few 
tachyzoites) 
? 
Yes 3 

1 Lüder et al[38] found that in rats only 30% of microglial cells were infected with T. gondii, whereas 10% of neurons and astrocytes were invaded. Besides, 
parasites showed low replication rates, with only one or two degenerated parasites in 93% of the parasitophorous vacuole. 2 Cerebellar granular neurons 
and pyramidal hippocampal neurons (when the size of a cell doubles, its volume increases eight fold). It must be noted that T. gondii size is 2-4 μm. 3 Not 
documented for T. gondii infection. GM-CSF, granulocyte-macrophage colony-stimulating factor. 

Figure 4 Possible model for NO-mediated regulation of IDO in IFN-
γ-primed mononuclear phagocytes. NOS, nitric-oxide synthase; 
IDO, indoleamine 2 ,3-dioxygensae, L-Arg, L-arginine; L-Trp, 
L-tryptophan; IFN-γ, interferon-γ; NO, nitric oxide; Kyn, kynurenine; 
3-HAA, 3-hydroxyanthranil ic acid; QA, quinolinic acid; SNP, 
sodium nitroprusside; GTN, glyceryl trinitrate; SNAP,  S-nitroso-N-
acetylpenicillamine; DEANO, diethylaminodinitric oxide. SNP, DEANO, 
and SNAP release NO extracellularly, while GTN is thought to release NO 
intracellularly (acc. to Thomas, Mohr, & Stocker[89]).
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Cell type 

Astrocyte 

Macrophage 

Microglial cells 

Neuron 

Natural killer cell 

T cell 

Table 12 Possible consequences on neurons of cytokines and biomolecules 
secreted upon T. gondii infection (acc. to Fagard et al [44]; with own 
modification)

Secreted biomolecules 
IL-6 
GM-CSF 
TNF-α
IL-1β 
arachidonic acid 
IL-12 
NO 
RNI 
NO 
H2O2 
IFN-g 
Glutamate 
NO 
TNF-α 
Glutamate 
IFN-γ 
PAF 
Il-4 
IFN-γ 
IL-10 

Neurotic 
- 
- 
± 
-
+ 
-
± 
+ 
± 
+ 
- 
+ 
± 
± 
+ 
- 
+ 
- 
- 
- 

RNI, reactive oxygen intermediates; PAF, platelet-activating factor; GM-
CSF, granulocyte-macrophage colony stimulating factor. It must be 
noted that T. gondii infection caused a significant increase in dopamine 
metabolism in neural cells, which may lead to psychobehavioral changes 
in individuals with toxoplasmosis[47]. Dopamine concentrations were 14% 
higher in the brain of mice with chronic infections than in controls[40], 
and this neurotransmitter dysfunction has been associated with a variety 
of neurological disorders including schizophrenia, attention deficit 
hyperactivity, tic disorders, Tourette’s syndrome, and dyskinesias. 
In addition, induction of indoleamine 2,3-dioxygnase expression and 
decreased levels of tryptophan and increased formation of kynurenine 
were found in the brain, lungs and serum of mice infected with the 
pathogen[45]. Moreover, dopamine stimulated tachyzoite proliferation in 
human fibroblast and primary neonatal rat astrocyte cell cultures[48], thus 
further enhancing harmful effects of the parasite on the brain function. 
In addition, chronic latent T. gondii infection is associated with various 
cytokines overproduction and it was postulated that cytokines may induce 
changes in mood and behavior leading to depressive illness in man[46,157]. 
Nitric oxide caused glutamate release from brain synaptosomes[42]. 
Interestingly, lithium chloride (a drug used in psychiatric diseases) 
potentiated astroglial nitric oxide synthase type-2 mRNA expression, and 
therefore treatment with this medicament could exacerbate inflammatory 
responses in the brain[43]. 

Treatment
Control
SNAP
SNAP + glucose
SNAP + glucose + VAD
NOC-18
NOC-18 + glucose
NOC-18 + glucose + VAD
Myxothiazol
Myxothiazol + glucose
Azide
Azide + glucose

Table 13 The induction of necrosis or apoptosis by NO donors or 
inhibitors of mitochondrial respiration in PC12 cells (acc. to Bal-Price et al 
[151]; with own modification).

Necrotic cells (%)
13.00 ± 1.40
83.80 ± 4.30
19.05 ± 1.80
14.80 ± 2.30
97.80 ± 0.80
17.30 ± 1.80
8.30 ± 1.10
92.50 ± 3.40
11.20 ± 3.60
97.23 ± 1.50
15.20 ± 3.10

Apoptotic cells (%)
0.10 ± 0.10
0.56 ± 0.10
19.45 ± 1.40
0.09 ± 0.1
0.10 ± 0.01
25.50 ± 2.4
0.50 ± 0.10
0.00
10.38 ± 2.20
0.00 
8.23 ± 2.80

SNAP, S-nitroso-N-acetylpenicillamine; NOC-18, DETA NONOate; VAD, 
a broad-spectrum caspase inhibitor. In all studies, medium was changed 
to glucose-free 1 day before experiments, and to fresh medium (with or 
without 20 mM glucose) containing NO donors (1 mM SNAP or 1 mM 
NOC-18) or mitochondrial inhibitors (2 μM myxothiazole or 2 mM azide) 
for 24 h. After this time the cell death was analyzed by tryptan blue or 
propidium iodide staining (necrotic cells) or by using chromatin dye 
Hoechst 33342 (apoptotic cells).

monolayers[160,163]. NO as a regulator of mast cell activation and mast 
cell-mediated inflammation, may participate in development of this 
pathology[164]. Because NO directly impairs the intestinal barrier 
function[161] this abnormality may be responsible for the iron, calcium 
and zinc deficiency reported in individuals with Pica behavior[165-167]. 
Because NOS2-derived NO (NOS type 2 is induced by cytokines, 
LPS, and endotoxin, is independent of calcium, and is prototypically 
expressed in inflammatory macrophages), controls pathogens 
by restricting their access to micronutrients[168,169], Pica behavior 
may therefore represent the host response to the pathomechanism 
that participate in defense against T. gondii infection. It should be 
noted that NO also enhanced hydrogen peroxide (H2O2)-mediated 
microvascular endothelial permeability, and this NO effect was 
concentration dependent[146]. McQuaid et al[170] demonstrated that the 
permeability produced by H2O2 could be exacerbated when relatively 
high levels of NO (100 μM sodium nitroprusside) were present, and 
this endothelial dysfunction may be associated with generation of 
singlet oxygen from H2O2

[171]. NO did not affect H2O2 metabolism by 
endothelial cells but markedly depleted intracellular glutathione[146]. 
The mechanism in which NO and H2O2 cooperated to promote 
increased microvascular permeability probably involved the cell-
surface bound iron (Fe3+)-catalyzed formation of a potent oxidant 
such as hydroxyl radical (OH-) generated from decomposition of 
H2O2 in the following reactions[146,172-174]:
Fe3+ + NO  Fe2+ + NO+

H2O2 + Fe2+  Fe3+ + OH- + OH- (highly reactive free radicals)
and by NO-mediated depletion of intracellular glutathione[174]. One 
cannot exclude that NO also intercepted iron on route to ferritin 
and indirectly facilitated removal of iron from the protein in a 
glutathione-dependent manner[175]. Okayama et al[174] proposed that 
physiologic conditions that can substantially elevate locally H2O2 

and NO might then result in a potential widening of the intercellular 
spaces only in junctions of the microcirculation cells exposed to 
such an oxidant stress, especially when relatively high levels of NO 
were present[146]. It must be added that limiting the availability of iron 
could represent a broad antimicrobial mechanism through which the 
activated enterocytes exert control over intracellular pathogens, such 
as T. gondii[176]. This finding may be supported by the fact that iron 
down-regulated NO synthesis and release by macrophages[90,177,178]. 
Interestingly, it was demonstrated that macrophages loaded 
with iron lose their ability to kill intracellular pathogens via NO 
formation[178], and this may be in line with finding of the significant 
association between neonatal iron overload and an increase in 
neurodevelopmental impairment among infants with iron overload 
compared to infants with normal iron status (64% vs 41%, p = 0.05)
[179]. 
    Tachyzoites of T. gondii stimulate production of IL-12[180-183] 
and this proinflammatory cytokine activates NK cells and T cells 
to produce IFN-γ and it is this early-produced IFN-γ that is crucial 
for host resistance[114,117,184-186]. IFN-γ and TNF-α act synergistically 
to mediate killing of tachyzoites by macrophages[123,185,187]. The 
combination of these two cytokines results in a greatly enhanced 
production of free oxygen radicals and NO, both of which can effect 
parasite killing[123,185,187] (Figure 4), although NO and its metabolites 
appear to be the primary effectors. NO is produced as a result of 
iNOS activation, which is dependent on activation of NFκB[183,188]. 
It must be noted that Gomez-Marin[189] obtained evidence of NO 
generation not only in the host cells, but also in T. gondii (similarly 
like in some other protozoans[190,191], which has its own constitutive 
calcium-dependent NOS producing 2-6 μM of nitrites that could be 
essential in intracellular signaling. The NO defensive mechanism, 



OXIDATIVE STRESS AS AN IMPORTANT 
DETRIMENTAL PATHOMECHANISM IN 
AUTISTIC CHILDREN WITH TOXOPLASMOSIS 
ASSOCIATED WITH NO OVERPRODUCTION
ASD
Oxidative stress is an important mechanism in autism and direct 
markers for enhanced lipoxidation were reported by several 
authors[71,136,211,212]. There is evidence that children with autism 
have mitochondrial dysfunction, mtDNA overreplication, and 
mtDNA deletions, which may be, at least in part, an underlying 
pathophysiological mechanism in a subset of individuals with 
ASD[141,213-216]. It must be noted that brain cells and cerebrovascular 
endothelium require high energy demands and have many 
mitochondria. Neuronal synapses also are areas of high energy 
consumption, and mitochondria are concentrated in the dendritic 
and axonal termini where they play an important role in ATP 
production, calcium homeostasis and synaptic plasticity[216]. Zhang 
et al[217] suggested that mtDNA could activate toll-like receptors 
(TLR) on immune or glial cells, finally resulting in a release of 
several proinflammatory cytokines in the brain of autistic patients[61]. 
It should be added that mtDNA components may be released also 
from viable neutrophils[218], and from activated tissue mast cells, 
a rich source of neurotensin[217-219]. Finally, mitochondria has been 
long recognized for their important role in cellular defense against 
microbial infection[220], and this is well in line with the intracellular T. 
gondii infection.
    In one study, which eliminated dietary and medicinal cofounders, 
red-cell thiobarbituric reactive substances (TBARS, a measure of 
lipoxidation) were twice higher in autistic children than in age-
matched controls[136,211,212]. It was also demonstrated that serum lipid 
peroxides and urinary isoprostanes were markedly higher in children 
with ASD[211,221]. Patients with autism also have decreased plasma 
total GSH and increased oxidized GSH levels[71,211,2222-224]. 
    Inflammatory reactions are believed to be an important 
contributor to neuronal damage in neurodegenerative diseases such 
as AD, Parkinson’s disease, multiple sclerosis, amyotropic lateral 
sclerosis[225]. Enhanced NO production play an important role in 
these diseases, including Down syndrome[226]. Excess of NO leads 
to increased formation of its metabolites and reactive nitrogen 
species (RNI) which have antimicrobial activity. High levels of 
NO (> 1 mMol) and/or peroxynitrite (ONOO-), nitrogen dioxide 
(NO2) and dinitrogen trioxide (N2O3) formed by reaction of NO 
with superoxide (O-), strong oxidizing and nitrating agents, can 
cause lipid peroxidation and generation of nitrated lipid adducts, 
inactivation of sodium channels, interaction with metals which have 
redox potential such as iron and copper, irreversible inhibition of 
mitochondrial respiration and damage to a variety of mitochondrial 
components (e.g. mitochondrial DNA, the ATP synthase, creatine 
kinase, superoxide dismutase, the mitochondrial membrane, induces 
mitochondrial swelling, uncoupling, depolarization, calcium 
release and permeability transition)[227-229]. Apparent hydroxyl-
radical production by ONOO- resulted in endothelial injury from 
NO and superoxide[230]. Peroxynitrite can be generated in the brain 
by microglial cells activated by proinflammatory cytokines or beta-
amyloid peptide and by neurons in three situations: depletion of 
L-arginine or tetrahydrobiopterin, mitochondrial dysfunction, and 
hyperactivity of glutamate neurotransmission[224,231]. Mitochondrial 
disease and dysfunction (abnormal lactate, pyruvate, ubiquinone, 
AspAT, low carnitine levels) have been increasingly recognized in 

110© 2015 ACT. All rights reserved.

Prandota J et al. Seroprevalence of chronic toxoplasmosis in autistic children

where levels of nitrites can reach 120 μM or more, is probably toxic 
for human and mice tissues[189].
    In summary, while NO at physiological levels is beneficial for the 
host, especially that it induces antitoxoplasmatic activity, at higher 
and toxic concentrations it can be implicated in development of many 
pathological processes, including inhibition of mitochondrial and 
cellular respiration, leading to oxidative stress, neurodegeneration, 
and damage of other tissues. 

Excessive NO production associated with chronic T. gondii 
infection cause down-regulation of various forms of cytochrome 
P450 enzyme activities in the liver, brain, and other tissues
NO reacts with various molecules, including superoxide, iron, thiol 
compounds and various hemoproteins, such as CYP450 isoforms 
at nearly diffusion-limited rates, and these proteins might be the 
primary targets[192,193]. NO donors decreased substantially in a 
concentration-dependent manner catalytic activities of CYP450 
isoenzymes in isolated perfused rat livers with the one-half-life of 
maximum inhibition being in the order of 2C11 > 2B1/2 > 2E1 = 3A2 
> 1A1/2. NO may regulate enzymatic activity of transglutaminases, 
Ca-dependent enzymes, and their biologic effects, via S-nitrosylation 
of their crucial thiol groupes (e.g. coagulation factor XIII)[194-197]. 
The use of NOS inhibitors in vitro and In vivo has been reported to 
attenuate declines in CYPP450 activities, protein and mRNA levels 
produced by inflammatory stimuli[198]. For example, administration 
of Nw-L-arginine methyl ester to rats treated with phenobarbital and 
LPS blocked the down-regulation of CYP2B1/2 activity, mRNA and 
protein[199]. It must be noted that not only bacterial LPS but also T. 
gondii soluble antigen induced a subset of LPS-inducible genes in 
macrophages[200].
    Constitutive cytochrome P450 isoenzymes play important roles 
in the metabolism of physiological substrates and xenobiotics, such 
as steroids, fatty acids, prostaglandins, environmental pollutants and 
carcinogens[192,198,201]. Infection or inflammatory and/or immunological 
stimuli cause changes in the activities and expression levels of 
various forms of CYP450 enzymes in the liver, as well as extrahepatic 
tissues[198,201]. Inflammatory mediators derived from different 
CYP450s could either enhance (NO, CYP3A) or inhibit (CYP2C, 
CYP2J) inflammatory responses[201]. For example, CYP2E1 was 
induced in astrocytes during brain tissue inflammation and CYP1A1 
was down-regulated[202]. Injection of LPS in the brain had profound 
effect on CYP1A, -2B, -2E1, and -3A activities in the liver[203,204]. LPS 
caused also release of many different cytokines, including TNF-α, 
IL-1, IL-6, IFN-γ[198]. LPS and IFN-γ induced excessive generation 
of NO in rat C6 glial cells, which differentially modulated several 
endogenous antioxidant enzymes, including catalase, glutathione 
peroxidase, CuZn- and Mn-superoxide dismutases[205]. 
    Cytokines administered in vivo or in vitro also have enzyme-
selective effects on CYP450 expression[198,206]. The reason for down-
regulation of CYP450 enzymes in the liver could be related to their 
ability to form NO, for example, rat CYP3A enzymes can form NO 
from N-hydroxyarginine[207], and inhibition of CYP3A activity in 
hepatocytes inhibits LPS and cytokine-stimulated production of NO 
and citrulline by more than 90% without affecting N-hydroxyarginine 
formation[208]. LPS-induced NO formation in animals was potentiated 
by dexamethasone induction of CYP3A, and the potentiation was 
inhibited by troleandomycin, an antibiotic inhibitor of CYP3A 
enzymes[209]. NO stimulates TNF-α production, and inhibition of NO 
generation blocked TNF-α release[210]. Thus, all these biomolecular 
metabolic alterations may be a basis of NO-induced cytotoxicity in 
disease states associated with excessive NO production.
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a subset of individuals with autism[213,232,233], and plasma glutamate 
levels were augmented in these patients[234]. The decreased serum 
levels of carnitine, coupled with significant elevation of alanine and 
ammonia concentrations in autistic persons[71], supported the notion 
about mitochondrial dysfunction in this clinical entity[216,235]. Also, it 
should be noted that low serum uric acid level and hyperuricosuria 
commonly found in autistic individuals[236,237] may be explained 
by a neuroprotective role of uric acid as a putative scavenger of 
peroxynitrite[168], thus reflecting a self-defense of the host against 
oxidative stress. 
    T. gondii. In the sera of 37 IgG-seropositive patients with T. gondii 
infection, Karaman et al[238] demonstrated significantly increased 
malondialadehyde (MDA) and NO concentrations, and a decrease in 
glutathione activity as compared with healthy controls (Table 14). It 
was also found markedly higher MDA levels (P < 0.001) paralleled 
with significantly decreased concentrations of glutathione peroxidase 
(P < 0.0188) and tocopherol fractions (alpha, gamma and lambda) 
(P < 0.001) in T. gondii seropositive than in seronegative blood 
donors[239,240]. These significant alterations in redox status between the 
two groups of blood donors indicate that chronic T. gondii infection 
is associated with oxidative stress because MDA is arising from the 
lipid peroxidation and is an indicator of oxidative stress, glutathione 
defends cells against oxidative damage by ROS and peroxidase, and 
tocopherol is an antioxidant[240,241]. Clancy et al[242] also found that 
NO reacted with intracellular glutathione and activated the hexose 
monophosphate shunt in human neutrophils. The increased NO 
concentrations can be associated with the stimulation of the cell-
mediated immune system in these individuals reflecting a defense of 
the host against the infection with the parasite. This may be supported 
by the finding that NO is a major effector molecule of macrophage 
cytotoxicity against T. gondii, and its production by macrophages is 
catalyzed by a cytokine-inducible form of the NO synthase positively 
controlled by TNF-α, IFN-γ, IL-2, and negatively controlled mainly 
by IL-10, IL-4, TGF-β[243,244]. Other cell types, such as endothelial 
cells and hepatocytes, display a similar capacity for NO generation in 
response to cytokine stimulation[244].
    In mice, T. gondii infection caused a significantly increased 
formation of reactive nitrogen radicals probably due to elevated 
serum NO concentrations, and a significantly higher serum 
kynurenine/tryptophan ratio compared with control animals (P < 
0.05)[245]. The authors suggested that increased free radical toxicity 
may cause elevation in tissue MDA in T. gondii-infected mice, while 
unchanged serum MDA might indicate the increased oxidative stress 
due to the parasite infection restricted to intracellular area. 
    In summary, oxidative stress in autistic patients may be at least in 
part due to the concomitant latent chronic toxoplasmosis, especially 
that T. gondii infestation often is regarded as a global threat. 

Unchanged CARS values found in the autistic children with 
and without toxoplasmosis. Possible effect of young age and 
maturation of the immune function
Our study performed in young children with autism did not show 
difference between the CARS values obtained in patients with 
and without toxoplasmosis (Table 7). This finding may be partly 
explained by a little difference in the mean age between these 
two groups of participants and maturation stage of their immune 
function. There was however approximately 5-fold increase in 
median serum NO levels in the Toxoplasma-positive vs Toxoplasma- 
free patients (Table 8), and otherwise it was demonstrated that even 
low physiological NO levels can cause substantial inhibition of 
respiration, and potentially make tissue respiration very sensitive to 
the oxygen tension[228,246]. 
    ASD. Studies of Ashwood et al[247] showed a significantly 
altered adaptive cellular immune function in 2-5 years-old children 
with ASD following in vitro stimulation of their peripheral blood 
mononuclear cells with PHA and tetanus. The production of IL-
13, TNF-α, and GM-CSF were about 2 to 7-fold increased in ASD 
cultures compared to controls following PHA stimulation. In contrast, 
there was greater than 30% decrease in IL-12p40 production after 
this immunostimulant administration[247]. Following stimulation, the 
frequency of CD3+, CD4+ and CD8+ T cells expressing activation 
markers CD134 and CD25 were markedly reduced in ASD, reflecting 
dysfunctional immune activation profile for T cells. Children 2 to 5 
years-of-age also had significant increases in plasma levels of IL-
1β, IL-6, IL-8, and IL-12p40 compared with controls (P < 0.04)[62]. 
Moreover, plasma chemokine levels MCP-1, RANTES, and eotaxin 
were markedly higher in children with ASD compared to controls 
(P < 0.03)[63]. It was noted that all these biomolecular perturbations 
were associated with more impaired communication and aberrant 
behaviors[62,63,247]. In addition, significantly higher IL-13/IL-10 and 
IFN-γ/IL-10 ratios were found in children with ASD than in matched 
controls[15]. IL-13 is a pleiotropic cytokine that shares a receptor 
component and signaling pathways with IL-4[248]. IL-13 may affect T 
cell functions and type 1 cell differentiation indirectly[249,250] through 
its down-regulatory effects on the production of proinflammatory 
cytokines[251,252], particularly IL-12[253]. Neonatal antigen-presenting 
cells showed a limited capacity to produce IL-12, due to a defect 
in the expression of IL-12(p35) gene[254]. In view of the importance 
of IL-13 in type 2 inflammatory responses and clinical allergy[255], 
including eotaxin production[256], it must be noted that the elevated 
plasma IL-13 levels in autistic children have been associated with 
markedly lower scores or less hyperactivity, as measured by the 
Aberrant Behavior Checklist[247]. Thus, it seems that the young age 
and associated maturation stage of the immune system played an 
important role in the lack of significant difference in the CARS 
values found in our autistic children with toxoplasmosis.    

T. gondii
The above-mentioned immune findings are important because 
Authier et al[257] demonstrated that IL-13 pretreatment of murine 
peritoneal macrophages increased their anti-T. gondii activity induced 
by LPS, and the cytokine used alone triggered polarization of 
macrophages towards TH2 type of cytokine generation. In addition, a 
correlation between the increase of NO production and enhancement 
of the microbicidal activity of the macrophages was found[257]. It 
appeared that IL-13 primed iNOS expression at mRNA and protein 
levels induced by LPS, and thus potentiated inhibition of T. gondii 
intracellular replication[257,258]. On the other hand, Chaves et al[259] 
reported that IL-13 and IL-4 negatively regulated the induction of 

Bioparameter

Glutathione

Malondialdehyde

NO

Table 14 Serum glutathione, malondialdehyde, and NO concentrations in 
T. gondii-seropositive patients and healthy controls (acc. to Karaman et al 
[238]; with own modification).

Group

Patients
Controls
Patients
Controls
Patients
Controls

No of 
participants
37
40
37
40
37
40

Serum g luta th ione and NO leve ls a re expressed as μM, and 
malondialdehyde concentrations represent nM. Results statistically 
significant at p < 0.05.

Serum levels 
(mean ± SD)
3.96 ± 0.10
10.37 ± 0.13
41.32 ± 2.05
9.18 ± 1.21
47.47 ± 1.00
39.18 ± 1.29

P values

0.001

0.001

0.001
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IDO mRNA expression, tryptophan catabolism, and the control 
of T. gondii replication in human fibroblasts activated with IFN-γ. 
This dual in vitro effects of IL-13 on T. gondii replication in various 
cells may therefore be well in line with the changes in behavior and 
developmental functioning of children with ASD[62,63]. 

SIGNIFICANT DIFFERENCES BETWEEN 
AUTISTIC CHILDREN WITH AND WITHOUT 
TOXOPLASMOSIS ASSOCIATED WITH 
AGE AND SEX MAY BE AT LEAST IN PART 
EXPLAINED BY DIFFERENT MATURATION 
STAGE OF THEIR IMMUNE SYSTEM
The phenotypic analysis of cord blood and neonatal and adult 
peripheral blood has shown differences in T-lymphocyte 
subpopulations (Table 15)[260,261]. The balance of TH1 and TH2 
cytokine production differs between neonates and adults. At birth, 
the response is skewed in favor of TH2 type of responses, due to 
reduced generation of regulatory cytokines. For example, compared 
to LPS-stimulated lymphocytes from neonates, production of IL-
12 was 5-fold higher at age 5 yrs, 15-fold higher at age 12, and 50 
times higher in adults[262]. The predominance of TH2 responses, even 
in children up to 12 years of age, decreased the efficiency of host 
protective responses, particularly to intracellular pathogens[261] such as 
T. gondii. Age contributed to the percentage of CD29+ lymphocytes 
(inducers of help) in adolescent children aged 12-18 yrs (F = 3.25, 
p < 0.002), with older individuals having a significantly higher 
percentage; to the number (F = 2.31, p < 0.03) and percentage (F = 
2.14, p < 0.04) of B cells, with younger participants having higher 
values; and to the percentage of NK cells (F = 2.34, p < 0.03), with 
older individuals having higher percentages[263].
    Bartlett et al[263] demonstrated also differences between males and 
females because a markedly lower percentage (but not number) of T 
cells was found in males than in females (F = 5.85, p < 0.0001), and 
the number of B cells (F = 3.43, p < 0.0009) was higher in males, 
as was the percentage (F = 2.14, p < 0.04). In addition, there were 
significantly lower numbers of CD4+ cells in the male adolescents 
than in the females (F = 2.24, p < 0.03), and a lower percentage of 
CD4+ cells was demonstrated among males than among females (F = 
5.85, p < 0.0001)[263]. Moreover, the percentage but not the number of 
CD29+ cells was lower among males than among females (F = 2.54, 
p < 0.02), and the helper-to-suppressor ratio was higher in females 
than in males (F = 2.44, p < 0.02). The study of Kang et al[264] also 
reported sex differences in immune responses and demonstrated 
enhanced immune reactivity to stress in adolescents. 
    It seems that the neonatal innate TLR-mediated responses (distinct 
from those of adults) important for orchestrating immunity of the 

host against T. gondii infection, as well as the impaired cellular 
responses observed during the first 2 years of life[255-269], are at least 
in part, responsible for the delayed diagnosis of autism despite 
evidence of prenatal changes in the brain[270,271]. The mature B cell 
differentiation and homing patterns associated with minimal response 
to polysaccharide antigens (e.g. T. gondii) observed in young children 
17-18 months of age[269] (Table 16) are in line with the prenatal and 
postnatal neurobehavioral alterations produced in animals exposed 
to antibodies from mothers of children with autism and other 
neurological and psychiatric diseases[269,272-275].
    The important immune responses and immune reactivity findings 
related to age and gender in the adolescent children[263,264] may 
partly explain the statistically significant differences in age, sex and 
seroprevalence of Toxo-IgG levels found in our study between autistic 
children with and without toxoplasmosis. This suggestion may be 
further supported by the fact that in mice sex-determined resistance 
to T. gondii was associated with temporal maturational differences 
in cytokine production[276]. In male animals, a rapid response to 
infection with high levels of TNF-α and IFN-γ helped to control 
parasite multiplication, after which IL-10 production (similar in 
both males and females) may be important in down regulating these 
potentially harmful excessive inflammatory mediators. The failure 
of female mice to respond quickly in terms of T-cell proliferation 
and IFN-γ generation compared with their male counterparts may 
account for their higher mortality rates and cyst burdens[276]. It should 
be also added that different strains of T. gondii induce different 
cytokine responses[277], as well as stage of parasite development and 
generated stage-specific antigens following pathogen interconversion 
(tachyzoites, bradyzoites, oocyst-sporozoites) (Table 17)[278,279], 
all these factors may affect intensity and specificity of immune 
responses in the host. It seems therefore that the increased generation 
of antibodies and autoantibodies directed against brain proteins 
in patients with autism and their families may be caused by latent 
chronic T. gondii infection[280]. 

Table 15 Distribution of lymphocyte subtypes in the fetus, newborn and adult (acc. to Schultz et al[260]; Luebke et al[261]; with own modification).

Percent

57 1,2

52 1

39 1

15 1,2

18 1,2

Marker
WBC
Lymphocytes
CD2+

CD3+

CD4+

CD8+

CD4:CD8
CD19 (B cells)
1 Per mm3. 2 Significantly different from adults. 3 Significantly different from neonates.

% of adult

69.5
67.5
78.0
62.5

138.5

Absolute 1

5,154 1

3,700 1,2

1,936 2

1,771 2

1,3212

499 2

2.9 1

547 1

% of adult
89.6
180.3
120.5
127.3
136.6
107.3
138.1
225.1

Fetus
Percent

72 1

61 1

45 1

18 1

11

% of adult

87.8
79.2
90.0
75.0

84.6

Absolute 1

13,426 1

4,263 1

2,971 1 

2,579 1

1,897 1

874 1

2.3
429 1

% of adult
234.1
207.7
185.0
185.4
196.2
188.0
109.5
176.5

Neonate
Percent

82
77
50
24

13

Absolute
5,750
2,052
1,606
1,391
967
495
2.1
243

Adult

 

Age

Birth

2 months

17-18 months

4-6 years

Table 16 Age related functional characteristics of systemic B cell (antibody) 
response in early childhood (acc. to Ogra[269]; with own modification).

B cell response
T cell dependent
B cell receptor diversity. 
Priming for B cell memory
Effective B cell response to 
most antigens
Mature B cell differentiation 
and homing patterns 2 

Effective response

T cell independent

Absent

Minimal or no response to 
polysaccharide antigens
Minimal response to 
polysaccharide antigens 1

Effective responses. 
Marginal B cell zones in 
lymph nodes

1 Based on data provided by Wilson & Kollmann[267]. 2 It must be noted that T. 
gondii-derived HSP70 functions as a B cell mitogen[266] and mature B cells 
are essential for vaccination-induced resistance to virulent T. gondii[265]. 
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and the prevalence of autism or speech/language impairment across 
the U.S. population[8,287].
    Lefevre-Pettazzoni et al[292] demonstrated delayed maturation of 
IgG avidity (i.e. strength of antigen binding with antibody) and its 
implication for the diagnosis of toxoplasmosis in pregnant women. 
In the hospital database, persistent low avidity was found even after 
a median follow-up period of 6 years. They suggested that various 
factors could interfere with maturation of avidity, including the assay 
system used, variations between individuals investigated, and the 
treatment administered. In contrast, Prandota et al[293] studied the 
seroprevalence of anti-T. gondii IgG and IgG avidity using enzyme 
immunoassay Patelia Toxo IgM, IgG in 178 children with headaches 
and it was found that 19 children (10.67%) (8 boys, 11 girls; 8-17 yrs 
old, mean age 14.36 yrs) had high serum anti-T. gondii IgG antibody 
levels (mean 120.10 IU/mL, range 32.2 to > 240 IU/mL; positive 
value was ≥ 9 IU/mL). It appeared that all Toxoplasma-positive 
children had high avidity index indicating chronic infestation. Nb. 
in only one study performed up to the present, 61% (11/18) of the 
analyzed patients with autism had headaches, with migraine as most 
frequent type of headache[294,295]. It seems therefore that the enhanced 
cerebrospinal fluid production and elevated extra-axial fluid found 
in infants, older children and adults with ASD[296-298], as well as 
the recurrent headaches reported in individuals with idiopathic 
intracranial hypertension[282,283,299], were due to congenital or acquired 
latent T. gondii infection, especially that plexus chorioideus is the 
preferential brain tissue area of the parasite settlement. In addition, 
it should be emphasized that different strains of the parasite induced 
different cytokine responses[277], and depending on the stage of 
differentiation (tachyzoites, bradyzoites, oocyst-sporozoites) specific 
antigens of T. gondii, IgG and IgM ELISA titers showed a wide range 
of values (Table 9)[278]. In autistic children, fever associated with 
eventual comorbidities, further complicates this situation because 
of eventual tachyzoite-bradyzoite interconversion and change of 
the parasite antigens in blood[300]. Thus, the increased generation 
of antibodies and autoantibodies against brain proteins in autistic 
individuals and their families should not be surprising[280], especially 
that for example autistic subjects had significantly elevated levels of 
antibodies to heat shock protein 90 (HSP)[301], which is critical for 
the maintenance of proper protein synthesis and function[302]. Nb. 
T. gondii HSP90 could be linked with many essential processes of 
the parasite such as host cell invasion, replication and tachyzoite-
bradyzoite interconversion[303,304]. In this context, it seems that 
the method used in our study for serum anti-T. gondii IgG level 
investigation fulfills criteria regarding high sensitivity and specificity, 
probably because it contains the horseradish peroxidase-conjugated 
antibody in the kit, similarly to the peroxidase-antiperoxidase (PAP) 
immunohistochemical staining technique developed by Sternberger et 
al[305] and modified and applied successfully by Conley & Jenkins[39], 
especially that all lots used at that time were negative for Toxoplasma 
antibody analyzed by the Sabin-Feldman dye test[306]. 
    These data indicate that the above-mentioned discrepancies in 
serum anti-T. gondii IgG titers obtained by other authors were 
caused by multiple factors, including different laboratory methods 
of investigation, stage-specific antigens of the parasite, its virulence, 
duration and intensity of infection and the disease, host age, sex, 
immunity, and associated comorbidities. On the other hand, it must 
however also be noted that recently Chapey et al[307] proposed a 
simple test for diagnosis of congenital toxoplasmosis based on 
whole-blood IFN-γ release after stimulation by crude parasitic 
antigens (the sensitivity and specificity of the assay were 94% and 
98%, respectively).

 

Antiserum fraction

IgG
   Bradyzoites 
   Oocyst-sporozoites
   Tachyzoites
IgM
   Bradyzoites 
   Oocyst-sporozoites
   Tachyzoites 

Table 17 Identification of stage-specific antigens of T. gondii. Value of 
ELISA titers of pooled immune mouse antisera to Toxoplasma tachyzoites, 
bradyzoites, and oocyst-sporozoites 1 [278].

Oocyst
-sporozoites
 
450
36450
450

1350
1350
1350

Antibody titers 
for: Tachyzoites

1350
450
12150

450
150
450

1 Parasites were used at a concentration of 104 per well. Mouse antisera 
were rised against the oocyst-sporozoite (feline-excreted stage), bradyzoite 
(chronic tissue cyst stage), and tachyzoite (invasive stage).

Bradyzoites

12150
1350
1350

1350
150
450

  

LIMITATIONS OF SERODIAGNOSIS IN 
PATIENTS WITH TOXOPLASMOSIS
Despite major advances in the field of DNA technology, most 
serological tests used for diagnosis of T. gondii infection still employ 
paraformaldehyde-fixed parasite, the Sabin-Feldman dye test, or 
crude extracts from tachyzoites, instead of parasite recombinant 
antigens. At present, diagnostic tests used for estimation of T. gondii 
IgG, IgM, and IgA seropositivity are not fully sensitive and specific, 
and there are different methods of serum sample preservation and 
elaboration[280,281]. Disease state of the host, its duration and stage 
(e.g. developing oxidative stress and resulting protein oxidation), 
may also affect results of performed tests for the parasite[280,282]. 
Other factors, such as for example uncontrolled treatment of other 
diseases and improper diet may provide NO donors[86,283,284] with 
possible associated consequences (Figure 4). It must be also noted 
that accidental antiparasitic treatment may suppress production and 
avidity of T. gondii-specific antibodies[285]. 
    Recently, a significantly lower occurrence of seropositive titers 
against T. gondii was found in patients with diabetes mellitus type 
1 (T1DM) and their close family members[286] as compared with 
healthy controls. Similar surprising results were obtained in the 
preliminary study of 83 autistic children aged 1-18 yrs (mean age 6 
yrs; 70 boys, 14 girls) in whom only three boys had positive serum 
anti-T. gondii IgG levels (2.5, 4 and 4 yrs old patients had 7.0, 5.94, 
and > 650 IU/mL IgG levels, respectively; positive value > 6 IU/
mL) (unpublished results, Magdalena Cubala-Kucharska, personal 
information, November 2012)[287]. This unexpected finding may 
be at least in part explained by the suppression of cytokine IL-2 
generation, decreased activation of lymphocyte B cells responsible 
for immunoglobulin secretion and markedly lower levels of IgG, 
IgA, and IgM due to T. gondii infection[288]. In addition, persistent and 
prolific primary autoimmune-induced generation of many antibodies 
characteristic for the patients with ASD directed against own proteins 
(the so called a perpetuum mobile-like biomachinery[280,289], may 
be associated with their exhausted secondary innate and adaptive 
immune responses directed against foreign T. gondii antigens[290], 
in which host-endoplasmic reticulum-parasitophorous vacuole 
interaction provides a route of entry for antigen cross-presentation 
in T. gondii-infected dendritic cells[83,291]. This explanation may be 
at least in part responsible for the above-mentioned markedly low 
occurrence of specific antibodies directed against the parasite found 
in the patients with T1DM and their families[286], and in the autistic 
children[287]. Congenital toxoplasmosis may also be a triggering factor 
responsible for the positive relationship found between the proportion 
of children who received the recommended vaccines by age 2 years 
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CONCLUSIONS  
This study for the first time showed a significantly higher 
seroprevalence of chronic toxoplasmosis among autistic children than 
healthy controls. Toxoplasma- positive autistic children had markedly 
increased serum IFN-γ and NO concentrations as compared with 
Toxoplasma- free participants. A significant correlation was found 
between the levels of these two biomarkers. Since these biochemical 
abnormalities are known to be associated with oxidative stress, latent 
chronic toxoplasmosis may thus exert a persistent harmful effects 
on development of the CNS, although the CARS values showed 
no marked difference between the two groups of autistic children, 
probably because of their young age and maturation of immune 
function. We suggest that test(s) for T. gondii infection should be 
performed in patients with ASD and diagnostic procedures/treatment 
regimens adequately modified.
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