ABSTRACT

Glioblastoma is the most common malignant glioma in adults with 22,500 new cases diagnosed each year. Median survival is less than one year with high rates of neurological disabilities. The current treatment approach includes surgery, chemotherapy and radiotherapy. Tumor resection has prognostic value and maximizing tumor resection should be always attempted. Fluorescence guided surgery for brain tumors have improved tumor resection with specificity up to 98%. Limitations for this technology includes lack of modified surgical microscopes in neurosurgical centers worldwide. We present the first two cases done in Mexico with no surgical complications using fluorescent technique. This paper supports the safety and advantages of using fluorescence guided surgery for malignant gliomas.
for diagnosis. Tumor resection has prognostic value, maximizing tumor resection should be attempted considering neurological function and preserving quality of life (QoL). Once the diagnosis for malignant glioma is established, fractionates focal radiotherapy (60 Gy) and chemotherapy is continue. The first-line choice for chemotherapy is Temozolamide (TMZ 75 mg/m2), administered daily (7 day/week) around 1 or 1.5 hour before radiotherapy during the initial phase. For the maintenance phase the doses rises to 150-200 mg/m2 on a daily x5 schedule every 28 days with blood count checked on days 21 and 28. Concomitant and adjuvant TMZ chemotherapy improved survival from 2 to 5 year in large randomized trial\cite{3,4}.

Continued refinement in microsurgical techniques and the use of adjunctive technologies have reduced major neurological morbidity to 8.5% and mortality of 1.7% for patients undergoing craniotomy\cite{6}. Radical resection of malignant gliomas carries the risk of injuring the adjacent neural and vascular structures in the brain, especially because of the infiltrative nature of the neoplasm, more evident in eloquent brain areas (Table 1)\cite{7}. Evidence shows the presence of tumor cells centimeters beyond the presumed tumor margin\cite{8}. Several factors can influence the survival of patient with GBM, which are age, preoperative performance status according to the KPS, tumor location, preoperative imaging characteristics, extent of tumor excision and postoperative treatment (TMZ & RT)\cite{6,9}.

Neurosurgeons have a central role in determining patient outcome by maximizing resection, always with arbitrary decision\cite{10}. Multiple resections for carefully selected patients with recurrent disease have demonstrated ability of increasing efficiency of adjuvant therapies. Repeated resections can be achieved with no significant increase in postoperative deficits or wound infections\cite{11}.

The treatment of patients with high-grade glioma remains a challenge for modern therapy. Cytoreductive surgery for malignant gliomas has been performed for decades, from lobectomies to hemispherectomies\cite{12,13}. The optimal extent of resection depends on tumor size and location, the patient’s general and neurological status and the surgeon experience. Survival advantage can be achieved when the extent of resection reaches more than 89%. Aggressive resection of 98% or more of the tumor volume was a significant independent predictor of patient survival (adjusted rate ratio 1.6, 95% CI 1.3-2, $p<0.0001$)\cite{14-17}.

In recent years, surgery has drawn efforts to improve outcome, using cut of the edge technology like fluorescence visualization of the tumor by 5-aminolevulinic acid, navigation-guided fence-post-procedure, intraoperative neurophysiological monitoring and intraoperative magnetic resonance imaging\cite{18-24}.

Fluorescence guided surgery has been recently added to the neurosurgeon arsenal to improve tumor resection. 5-aminolevulinic acid (5-ALA) is a tool for identifying residual tumor and extending resection margin of malignant glioma. This technique was tested in a randomized Phase III study in Europe\cite{25}. The exogenous administration (orally) of 5-ALA is formed within the mitochondria from succinyl-choline acetate and glycine by 5-ALA-synthetasa, located at the mitochondrial membrane. 5-ALA is the released and dehydrogenated in the cytoplasm producing porphobilinogen then coproporphyrinogen III and finally returns into the mitochondria as protoporphyrin IX (PpIX), a natural precursor of heme, in the target tissue. It causes a negative feedback control exerted by heme on the enzymatic step in ALA synthesis\cite{26} (Figure 1).

Table 1

<table>
<thead>
<tr>
<th>Grade</th>
<th>Functional Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>III: Eloquent brain</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1 Heme synthesis Pathway. Heme synthesis is conducted in the cytoplasm and mitochondria. It is mainly biosynthesized in liver and red blood cell by 5-aminolevulinate synthase and ferrochelatase. Exogenous ALA bypasses the ALAS inhibition. This causes ferrochelatase saturation and protoporphyrin IX accumulation.
PpIX is present in nearly every nucleated cell; preferential formation and accumulation of this photosensitizer have been demonstrated in tissues known to have a high cellular turnover. The selective accumulation of PpIX is still poorly understood, with a high specificity of 98%. Quantitative data demonstrate PpIX concentration yielded the best classification efficiency (87%) as a diagnostic variable. The probability of classifying tissue as normal given that it is normal 92% with sensitivity (probability of classifying tissue, as abnormal tumor given that it is abnormal is 84%. The positive predictive value (PPV) is 95% and the Negative Predictive Value (NPV) is 77%[27]. One theory relies on a reduced ferrochelatase activity[28,29].

Using a modified neurosurgical microscope, porphyrin can be intra-operatively visualized (fluorescence) to identify residual malignant tumor. Due to the intra-tumoral synthesis, 5-ALA differ from other fluorescing agents that have been investigated for tumor discrimination such as fluorescein, which enter the malignant gliomas via the defective blood-brain barrier[29]. Absorptions of blue light elevated the PpIX molecules from a electronic ground state to a higher excited state, especially to a blue spectrum (around 400-440 nm). Under excitation of light, the intensity of PpIX fluorescence emitted by tumors decreases continuously due to a photochemical decomposition of PpIX called photo-bleaching[29].

5-ALA is orally given on an empty stomach 3 to 4 hour prior to the anesthesia induction. It is preferentially then, taken up by the liver, kidney, endothelium and skin. The maximum PpIX plasma level is reached in 4 h after oral administration of 5-ALA with the recommend dose (20 mg/kg). The plasma levels rapidly decline during the subsequent 20 h and becomes undetectable after 48 h. It has a half-life of 1-3 h. Approximately 30% of the orally administered 5-ALA is excrete unchanged in urine within 12h. It has shown to be safe in a number of studies, mild elevation of liver enzymes with no other signs of hepatic disorders were reported (GTP 85%, GOT 81% & GGT 96%) on day 7 after administration of 5-ALA. Skin photosensitivity occurred in <1% of patients[30].

CASE PRESENTATION

We present two clinical scenarios of the first two cases performed in Mexico using 5-ALA. The first case is of a 44 year-old male with prior history of brain tumor resection in another hospital with pathological result compatible with Grade III malignant glioma according the WHO classification and adjuvant TMZ and fractionated radiotherapy (55 Gy) in 2001. He was then brought back to the operating room for tumor recurrence in another hospital and finally brought to us with frontal lobe syndrome. He was surgically intervened in the Centro Medico Nacional 20 de Noviembre, ISSSTE, Mexico City, in December 2010. Consent form was sign for 5-ALA (20 mg/kg, Gliolan®, Medac HmbH Wedel, Germany) and a modified neurosurgical microscope was used (OPMI Pentero 900®, Carl Zeiss GmbH, Oberkochen, Germany). There were no complications during the surgical procedure and the patient was discharged 4 days after. The pathology report was consistent with the same grade III malignant glioma. During the patient follow-up MR no tumor recurrence was seen (Figures 2 and 3).

The second case is from a 37 year-old female with no relevant past-medical history presenting in to the office complaining of headaches, nausea, amaurosis fugax, left-eye ptosis and facial asymmetry. The head MR showed a left frontal extra-axial lesion with important perilesional edema. This case was performed in the Department of Neurosurgery, Hospital Central Dr. Ignacio Morones Prieto S.S.A., San Luis Potosi, S.L.P. Mexico. After signing the consent form the patient was taken to the operating room with previous administration of 5-ALA (20 mg/kg, Gliolan®, Medac HmbH Wedel, Germany). We also used a modified microscope (OPMI Pentero 900®, Carl Zeiss GmbH, Oberkochen, Germany) using standard surgical techniques and Neuronavigation system (AxiEM Medtronic, Inc.®) achieving gross total resection. No complications were registered during surgery or after, and the patient was discharged from the hospital 3 days after the surgery. The final pathology report was compatible with Grade I Meningioma. During the patient follow-up MR no tumor recurrence is seen (Figures 4 and 5).

DISCUSSION

Florescence guided surgery for malignant gliomas using 5-ALA has proven to be a safe and useful tool for identifying residual tumor and optimizing the extend of resection. As describe by Kamp and cols., we also found it useful identifying normal brain tissue or changes like gliosis, necrosis, vascular hyalization and scar formation in our patient with prior history of TMZ and radiotherapy[31].

Infiltration of eloquent areas is based with preop imaging (MR). Complete resection carries a higher risk of postoperative neurological
5-ALA is useful to discriminate neoplastic tissue from adjacent normal brain. One major limitation include that 5-ALA is still not available worldwide and is non-FDA-approved. The second major limitation is that not all neurosurgical centers have a modified microscope with blue spectrum light source to provoke PpIX excitation. Conjunct efforts must be address to provide this useful technology to all surgical centers to improve patient’s survival.

CONFLICT OF INTERESTS

The Author has no conflicts of interest to declare.

REFERENCES

Peer reviewers: Masashi Kameyama, Division of Nuclear Medicine, Department of Radiology, School of Medicine, Keio University, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan; David Hung-Chi Pan, M.D., Department of Neurosurgery, Taipei Veterans General Hospital, 201 Shih-Pai Road, Sec 2, Taipei, Taiwan.