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ABSTRACT
Pulmonary fibrosis is a major radiotherapy-related toxicity, 
that worsens patients’ quality of life, eventually leading to 
reduced treatment doses and subsequent decreased cancer 
control probability. Current therapies for radiation-induced 
pulmonary fibrosis are largely ineffective; thus, intense re-
search has been done to elucidate the pathogenesis of pulmo-
nary fibrosis and develop therapeutic strategies able to miti-
gate this severe side effect without interfering with anticancer 
treatment. The development of radiation-induced pulmonary 
fibrosis involves multifactorial complex processes. The severi-
ty of the response to lung irradiation is influenced by the dose 
of radiation, the volume of the irradiated parenchyma, the 
simultaneous use of chemotherapy, preexisting lung diseases, 
and age and genetic predispositions. Moreover, ionizing ir-
radiation activates a cascade of genetic and nongenetic events 
involving several cell types, such as pneumocytes, endothe-
lial cells, myofibroblasts and immune cells. This complex 
radiation-induced biological response is mediated by numer-
ous cross-talking signaling pathways and molecules, includ-
ing the TGF-β system, cytokines, the NF-kB network, and 
free-radicals. However, despite the recent progress made in 
understanding the molecular and cellular mechanisms under-

lying pathophysiology of lung injury after radiation exposure, 
much remains to be learned about how the various cells and 
signaling pathways interact. Thus, further studies are needed 
to identify reliable markers and effective targets, with the aim 
of developing therapeutic approaches able to prevent or treat 
this severe condition.

© 2015 ACT. All rights reserved.

Key words : Pu lmona ry f i b ro s i s ; Rad io the rapy ; 
Myofibroblasts; Inflammatory mediators; Oxidative stress

Mariangela S, Monica M, Francesca T, Laura T, Mauro L, Sabrina 
C, Lucia DB, Lorenzo L. Biological basis of radiation-induced 
pulmonary fibrosis. Journal of Tumor 2015; 3(3): 325-331 Available 
from: URL: http://www.ghrnet.org/index.php/JT/article/view/1505

INTRODUCTION 

Radiation therapy is an essential part of treatment programs for 
multiple thoracic malignancies, along with surgery and chemotherapy. 
The lungs are one of the most radiosensitive organs and the risk of 
severe radiation-induced side effects, such as lung fibrosis, is often 
dose-limiting and can significantly compromise the effectiveness of 
radiotherapy.
    The severity of the response to lung irradiation is influenced by 
several factors. Radiation-induced lung injury is directly related to the 
total dose of radiation delivered to the lung[1], to the dose per fraction 
[2] and to the radiation dose rate, while inversely correlates with the 
number of fractions into which the dose is divided[3]. Lung injury 
is also proportionate to the volume of the irradiated parenchyma[4]. 
Usually, the damage increases as the irradiated volume increases and 
the lung better tolerates a high dose in a small volume than a low 
dose to the whole lung. 
    Moreover, the simultaneous use of adjuvant chemotherapy, 
preexisting lung disease, poor pulmonary function, age and genetic 
predispositions have been reported as critical factors for the 
development of pulmonary fibrosis[5].
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Figure 1 Main signaling pathways involved in the pathogenesis of radiation-induced pulmonary fibrosis.
α-SMA: α smooth muscle actin; CTGF: connective tissue growth factor; ECM: extracellular matrix; EMT: epithelial to mesenchymal transition; ERK1/2: 
extracellular-signal-regulated kinases 1/2; IkB: inhibitor of kB; IKK: IkB kinase (responsible of IkB degradation); JNK: c-Jun N-terminal kinases; MMPs: 
matrix metalloproteinases; NF-kB: nuclear factor-kappa-light-chain-enhancer of activated B cells; p38: p38 mitogen-activated protein kinases; PI3K: 
phosphatidylinositol 3-kinase; PPA2: protein phosphatase A2; RNS: reactive nitrogen species; ROS: reactive oxygen species; Smad: small mother against 
decapentaplegic; TGF-β: transforming growth factor β; TNFα: tumor necrosis factor α

    Usually, the clinical and histological features of radiation-induced 
lung disease appear weeks after treatment and are divided into early 
pneumonitis and late fibrosis. 
    Radiation pneumonitis usually develops after about 1-3 months 
after radiotherapy and consists of symptomatic changes such as 
shortness of breath, congestion, cough and fever. 
    The phase of chronic inflammation and fibrosis occurs more 
gradually, months to years after radiotherapy[6,7]. Pulmonary fibrosis 
is characterized by fibroblasts and myofibroblasts accumulation, 
inflammatory cells infiltration, vascular damage and collagen 
deposition, with consequent scarring and tissue retraction[6,8] and may 
lead to permanent respiratory failure, with impairment of oxygen 
transfer[9]. 
    Current therapies for preventing or treating radiation-induced 
pulmonary fibrosis are largely ineffective[5,10], thus elucidating the 
signaling pathways underlying pulmonary fibrosis development is 
urgently needed for the identification of new strategies able to treat or 
mitigate this devastating condition. 

CELLS INVOLVED IN PULMONARY FIBRO-
SIS DEVELOPMENT
Immediately following insult due to radiation, a rapid cascade of 
genetic and nongenetic events is activated[11-13]. 
It is now well known that fibrosis is not confined to the injured site 
only, but it is a systemic process involving several cell types, that are 
recruited to sites of injury[14]. 
    In particular, pneumocytes (both types I and II) and endothelial 
cells appear to be the cells most susceptible to nongenetic damage [15]. 

Radiation causes apoptosis and desquamation of epithelial cells from 
the alveolar walls, and capillary luminal dilatation and congestion, 
that in turn lead to an increase in vascular permeability and 
production of interstitial edema, which may evolve in alveolar edema. 
The attempt of type II pneumocytes to re-establish a functional 
alveolar epithelium by proliferating and differentiating into the type 
I cells might even result in an abnormal epithelial repair, typical of 
lung fibrosis[16]. In addition, radiation-induced pulmonary damage 
is characterized by a large inflammatory cells infiltration and an 
increase in collagen deposition[17,18], ultimately leading to impairment 
of gas exchange and lung function[19]. The pivotal cellular mediator 
of pulmonary fibrosis are myofibroblasts, which are the principal 
producers of collagen, fibronectins and other matrix molecules after 
injury[20-22]. 
    Myofibroblasts can originate from a variety of sources, including 
resident interstitial fibroblasts, epithelial and endothelial cells, which 
adopt fibroblast-like properties through processes of epithelial/
endothelial to mesenchymal transition (EMT/EndMT)[14,23,24], and 
circulating fibrocytes, fibroblast-like cells derived from bone marrow 
stem cells[25,26]. 
    The infiltrating immune cells recruited following thorax 
irradiation, principally the alternatively activated macrophages, 
but also monocytes, lymphocytes, neutrophils and basophils, have 
been also proposed to play a central role in the pathogenesis of 
pulmonary fibrosis[27,28], since they secrete cytokines and chemokines 
that stimulate the differentiation of fibroblasts and other cells into 
myofibroblasts[29]. 
    Thus, targeting inflammatory cells has been proposed as a 
therapeutic strategy for radiation-induced lung injuries. For instance, 



tissue and extracellular matrix (ECM) deposition[65], the synthesis 
of matrix-modifying enzymes (i.e. matrix metalloproteinases, 
MMPs) and stimulates the expression of α-SMA, a hallmark of 
myofibroblasts shown to be overexpressed in areas of active fibrosis 
[66]. Moreover, in the immune system, TGF-β suppresses T-cell 
responses[17].
    The binding of TGF-β to its specific receptors TGF-βR I and II 
leads to the induction of the Smad family of transcriptional activators 
- particularly Smad3[67] - that modulate the expression of target 
genes and induce cellular dedifferentiation and reprogramming by 
interacting with specific binding sequences in the regulatory regions 
of the genes[29,68]. Smad proteins, in addition, can induce other 
transcription factors, such as Slug, Snail, Scatter, lymphoid enhancing 
factor-1, and beta-catenin[24], in turn facilitating EMT.
    The participation of TGF-β/Smad signaling in the induction of 
fibrosis was demonstrated by several works, showing that Smad3-
deficient animals displayed a reduced fibrotic response[20,69] and 
an accelerated wound healing[70] following irradiation and that a 
hampered Smad activity led to a significant decrease in pulmonary 
fibrosis development[71,72]. Indeed, antibodies against TGF-β have 
been reported to decrease the radiation-induced fibroblasts to 
fibrocytes differentiation[73] and inhibitors of TGF-βRI (SM16) or 
TGF-βRI serine/threonine kinase (LY2109761) have shown to reduce 
radiation-induced pulmonary fibrosis in animal models[74,75]. 
    However, other studies suggested that the therapeutic suppression 
of the TGF-β/Smad pathway should be limited to the early phases 
of the disease, since this pathway appears not necessary for the 
maintenance of the fibrotic phenotype[76,77]. 
    Besides the canonical Smad pathway, TGF-β can also activate non-
Smad-mediated pathways, such as Rho family proteins, mitogen-
activated protein kinases (MAPKs) (ERK1/2, JNK, p38), PI3K, 
protein phosphatase (PP) 2A and the epithelial polarity protein Par6 
[78-80].
    It has been reported that the extent and reversibility of EMT was 
influenced by the cross-talk between the classic TGF-β pathway and 
the above mentioned signaling molecules[5]. 
    Accordingly, a Rho/ROCK inhibitor and statins (modulating the 
Smad pathway) have shown to decrease radiation-induced lung 
fibrosis[81]. 

Connective tissue growth factor (CTGF)
CTGF is induced by TGF-β, and usually acts as a mediator of TGF-β 
fibrotic effects[76]. However, it has been suggested that CTGF, once 
active, escapes regulation by TGF-β and exerts a direct profibrotic 
effect, contributing to the promotion and maintenance of lung fibrosis 
[77,82,83]. This hypothesis is supported by data demonstrating that CTGF 
is able to activate collagen type 1 and to exacerbate extracellular 
matrix synthesis[84] and that CTGF deletion in fibroblasts and smooth 
muscle cells greatly decreases fibrosis[85]. 

NF-kB signaling
The production of cytokines in immune cells is partially regulated 
at the transcriptional level by DNA binding proteins, such as the 
transcription factor NF-kB[86], which appears to be a key mediator of 
the cellular response to irradiation[87,88] and to play an important role 
in the pathogenesis of pulmonary fibrosis[89,90].
    NF-kB, usually bound to the inhibitory protein IkB-α in the 
cytoplasm, is activated by the phosphorylation and degradation 
of IkB-α induced by several signals, including TNF-α[91,92], and 
translocates into the nucleus, where it controls the expression of a 
number of inflammatory response genes[93,94]. 
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the beneficial effects of glucocorticoids have been demonstrated 
in several irradiated organs and tissues[30], and Sivelestat (inhibitor 
of the neutrophil elastase) has been reported to decrease collagen 
deposition and neutrophil accumulation in damaged lungs[31].
    Dividing cells, such as endothelial and epithelial cells, can also 
undergo a direct genetic damage, that induces cell apoptosis and a 
loss of integrity of pulmonary capillaries, leading to alveolar edema 
and finally to respiratory failure. In addition, it has been reported 
that various gene loci on chromosomes 1, 17, and 18 influence 
susceptibility to radiation-induced pulmonary fibrosis[32,33].

SIGNALING PATHWAYS INVOLVED IN RA-
DIATION-INDUCED PULMONARY FIBROSIS
Ionizing radiation activates a quite complex biological response, 
mediated by several cross-talking signaling pathways and 
molecules[34] (Figure 1).

Cytokines and chemokines
Preclinical models showed that numerous immune cells, such as 
macrophages, lymphocytes, monocytes, neutrophils and basophils, 
are recruited into the lung after thorax irradiation[27]. At the same 
time, an increase in the levels of cytokines and chemokines involved 
in the recruitment, proliferation and activation of immune cells was 
observed: macrophage chemoattractant proteins (MCP)-1 and -3 and 
macrophage inflammatory proteins (MIPs)[35], macrophage-colony 
stimulating factor (M-CSF), IL-1β[27], interleukin-6 (IL-6)[36], IL-8[37], 
IL-17[17], CCL11 (Eotaxin)[38] and tumor necrosis factor (TNF)-α[5,39] 
have all been implicated in lung fibrosis. The use of anti-TNF-α 
antibodies or TNF-α soluble receptors, for instance, has been suggested 
as a potential therapeutic strategy to prevent lung fibrosis[40-42].
    Among cytokines, Th2-type immune response seem to play a 
pivotal role in the development of pulmonary fibrosis[43,44]. The 
prototypical Th2 cytokine IL-4, whose levels increase during lung 
fibrosis[45], has been shown to exert pro-fibrotic activities, such as 
inducing the extracellular matrix proteins synthesis, the alternative 
activation of macrophages and the polarization of T cells towards the 
Th2 phenotype[46-48]. Another key profibrotic Th2 cytokine is IL-13[49], 
which promotes the differentiation of fibroblasts into myofibroblasts 
[50] and stimulates the transforming growth factor (TGF)-β signaling 
by inducing the production of latent TGF-β and enhancing the TGF-
β-activating pathways[51].

TGF-β
The TGF-β system is involved in many pathological processes[52] 
and it has been reported to drive the majority of the cellular events 
associated with radiation-induced fibrosis[29,53-55].
     Increases in TGF-β serum or plasma levels in patients during and 
after radiotherapy have been shown to be associated with a higher 
risk of radiation-induced lung injury[56-58]. Increased TGF-β1 and 
TGF-β2 concentrations have been correlated to the development of 
fibrosis in a murine model of radiation-induced pulmonary damage [59]. 
    TGF-β is produced by mesenchymal, inflammatory (including 
lymphocytes, macrophages, eosinophils and neutrophils) and 
epithelial cells[60-62]. Moreover, it has been shown that certain 
bronchial and alveolar cells can be sources of TGF-β[63]. 
    TGF-β is usually maintained in an inactive state by a latency-
associated protein (LAP), but it is rapidly activated by a radiation-
induced proteolytic cleavage, that dissociates TGF-β from LAP. 
    Once active, TGF-β stimulates the terminal differentiation of 
progenitor fibroblasts to functional fibrocytes[21,64], induces connective 



    Thus, the suppression of the NF-kB network, either by protecting 
IkB-α from degradation or by inhibiting the NF-kB-induced up-
regulation of proinflammatory and profibrogenic cytokines, could 
be a potential therapeutic approach for preventing or reducing lung 
fibrosis

ECM remodeling
The differentiation of fibroblasts to myofibroblasts during pulmonary 
fibrosis development lead to an increase in the synthesis of ECM 
proteins[95,96]. However, the changes in ECM composition, in turn, 
influence myofibroblast differentiation and are determining factors 
for the progression of the disease.
    In addition to the well-known increase in vimentin and alpha-
SMA expression induced by irradiation[97], the expression of 
elastin, type V collagen and tenascin was recently correlated to new 
collagen formation during lung fibrosis induction[98]. Moreover, the 
observations that MMP-2 and MMP-9 expression increased during 
radiation-induced lung injury[99] and that mice lacking MMP-13 are 
more resistant to pulmonary fibrosis development[100] demonstrated 
the role of metalloproteinases in the pathogenesis of lung fibrosis.

Surfactant Proteins
As already mentioned, when the alveolar epithelium is damaged, type 
II pneumocytes start proliferating to differentiate into type I cells. 
As a consequence, an increase in the synthesis and release of type II 
pneumocytes-associated surfactant proteins (SPs) in the circulation is 
observed[101]. In particular, the monitoring of SP-A and SP-D serum 
levels has been found to be associated with pulmonary fibrosis[102] 
and the SP-C precursor has been suggested as a marker of radiation-
induced lung injury[101]. 

Oxidative stress
Radiation exposure leads to the production of free-radicals, mostly 
the reactive oxygen species (ROS, i.e. superoxide, hydrogen 
peroxide, and hydroxyl radical) and the reactive nitrogen species 
(RNS). These reactive species cause oxidative stress to the tissue [103,104] 
and appear to be involved in the molecular pathology of fibrosis[105] in 
concert with cytokines.
    The radiation-induced increase in ROS/RNS levels is, indeed, 
associated to changes in the cytokine pattern, and leads to lipid 
peroxidation, DNA and protein oxidation and the activation of 
fibrogenic signals[106-108].
    Since its participation in the pathogenesis of fibrosis, oxidative 
stress has been explored as a potential therapeutic intervention point. 
One of the most extensively studied treatment strategies are agents 
which act as free radical scavengers, such as thiols. In particular, 
the thiol amifostine has been approved by the FDA for use as a 
radioprotective agent[109] and is clinically used to prevent xerostomia 
in head and neck cancer patients undergoing radiotherapy[110]. 
    ROS/RNS production can also be targeted by enhancing the 
activity of antioxidant enzymes, such as superoxide dismutases 
(SODs) and catalase. Several animal studies reported that the 
administration of a SOD transgene/liposome delivery vehicle or of 
SOD-catalase mimetics reduced radiation-induced pulmonary fibrosis 
by preventing oxidative damage[103,111,112]. 

Renin–angiotensin system
The renin-angiotensin system, whose main function is regulating 
blood pressure and fluid balance in the body, has been reported to 
be involved in the pathogenesis of radiation-induced lung injury[113]. 
Thus, this system has been proposed as a potential therapeutic target. 
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Actually, some angiotensin-converting enzyme (ACE) inhibitors 
and an angiotensin receptor blocker have demonstrated success in 
protecting lungs from fibrosis after radiation exposure[114].

CONCLUSIONS  
Radiation-induced lung fibrosis is a major radiotherapy-related 
toxicity, that worsens patients’ quality of life and can eventually force 
physicians to limit the dose of cancer treatment.
    Thus, intense research has been done to elucidate the molecular 
pathology of pulmonary fibrosis and develop therapeutic 
interventions that could prevent or treat this severe condition.
    The development of radiation-induced pulmonary fibrosis involves 
multifactorial complex processes. Despite the recent progress made 
in understanding the molecular and cellular mechanisms underlying 
pathophysiology of lung injury after radiation exposure, much 
remains to be learned about how the various cells and signaling 
pathways interact. 
    Thus, further studies are needed to identify reliable markers and 
effective targets, with the aim of developing therapeutic approaches 
able to prevent or treat this severe condition.
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