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ABSTRACT
Acoustic micro/nano manipulation is a technology to handle or 
actuate micro/nano objects in a controlled way by physical effects of 
sound waves. In this editorial review, principles employed by acoustic 
micro/nano manipulations are listed and briefly explained, and the 
manipulation functions based on these principles are described. Also, 
the technological challenges in acoustic micro/nano manipulations 
are pointed out.
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Editorial
With the development of fields such as biomedicine, micro/nano 
fabrication, nanoscience and nanotechnology, material engineering, 
renewable energy, etc., more actuation functions for micro/nano 
objects are being required[1,2]. They include trapping (or capture), 
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orientation, transfer, release, sorting, revolution, spin, removal, 
concentration, assembly, etc. These actuation tasks are also called 
manipulations. However, most of the above listed manipulations 
cannot be effectively and efficiently realized by the conventional 
actuation technology, which have limited driving forms and operating 
principles[2]. 
    To fulfill the micro/nano manipulation functions, researchers 
in various academic areas have proposed and investigated lots of 
strategies. These strategies can be classified as optical[1,3], magnetic[4], 
electric[5], mechanical[6], AFM[7], microfludic[8] and acoustic 
methods[9-15], based on the physical principles which they use.  
    The acoustic micro/nano manipulation technology utilizes 
physical effects of sound to manipulate micro/nanoscale solids, and 
micro/nanoliter droplets and bubbles. It has the features such as 
no selectivity to material properties of manipulated samples, little 
heat damage to manipulated samples (in some methods), diverse 
manipulation functions, simple and compact device structures, etc. 
Operating frequency in acoustic micro/nano manipulations may be in 
the ultrasonic range (>20 kHz) or several ten to several hundred Hz (in 
audible sound range).
    Physical effects of sound, employed by the acoustic micro/nano 
manipulation technology, include the acoustic radiation force[2,16-19], 
acoustic streaming[19-21], vibration based frictional driving[22], Chladni 
effect[23,24], acoustic cavitation[25,26], Bjerknes forces[2,27-29], and sound 
induced intermolecular force decrease[2,30-34]. So far, the acoustic 
radiation force and acoustic streaming are two mostly utilized 
physical effects in acoustic micro/nano manipulations. 
    The acoustic radiation force is mainly used to manipulate micro 
objects. It may be generated by the standing wave[2,5,9,19,35-37], focused 
beam[10] and travelling wave[2,11,17]. The standing wave may be 
generated by the radiation face-reflector structure[2] or SAW (surface 
acoustic wave) device[19]. The acoustic radiation force generated by 
a standing wave can push micro objects in the acoustic field to the 
sound pressure nodes (or anti-nodes) and make them concentrating 
at the positions. It is quite effective in concentrating multiple micro 
particles in a standing wave. However, the standing wave method 
is not fit for the manipulations of individual micro objects and 
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relatively complicated manipulation functions such as the controlled 
assembly of micro components. The focused beam method uses the 
focal point of an ultrasonic beam to trap a single micro object or 
several micro objects. The trapped micro object(s) can be transferred 
by simply moving the ultrasonic transducer generating the ultrasonic 
beam. However, the stability of the trapped micro object is poor 
owing to the noncontact working principle, and strong ultrasound 
at the focal point may cause a high temperature rise to damage the 
biological samples and other heat sensitive samples. The travelling 
wave method utilizes large spatial gradient of sound field near a 
radiation point, line or surface vibrating in-plane to generate the 
acoustic radiation force to attract micro objects onto the radiation 
source. It has the capability of trapping and rotating single or 
multiple micro objects, and the stability of the trapped sample(s) is 
better. However, wet and soft samples trapped by this method may 
stick to the manipulating probe, and releasing the sample(s) from the 
manipulating probe in a controlled way is still a big challenge[38,39]. 
Another technological challenge in the travelling wave method is 
how to decrease the temperature rise in the manipulation part. 
    The acoustic streaming generates the manipulating force required 
by acoustic nano manipulations. At the present stage, almost all of 
the acoustic nano manipulations rely on the acoustic streaming[2]. It 
can be generated by the spatial gradient of Reynolds stress and the 2nd 
order sound pressure in a sound field, collapse of acoustic bubbles, or 
elliptical motion of a micro manipulation probe. Realized functions 
of the acoustic nano manipulations include trapping, orientation, 
positioning, transfer and rotation of individual nanowires in deionized 
water, and concentration of nanowires and nanoparticles in deionized 
water[2,15,40-42]. In the acoustic nano manipulations, the temperature 
rise at the manipulation area is usually very low, and can be lower 
than 0.1℃[15]. This feature makes the acoustic nano manipulation 
technology very competitive in the handling of biological and heat 
sensitive samples. In the acoustic nano trapping, a trapped nano 
object may be in contact or not in contact with the manipulation 
probe[2,15,40,42]. The acoustic nano concentration can be implemented 
in a water droplet on an ultrasonic stage in vibration[2,43], or in a 
water film excited by an acoustic needle suspended above stationary 
substrate[2,44]. To enhance the devices’ manipulation performance, 
acoustic streaming fields in the devices need to be quantitatively 
analyzed, and vibration control methods of the ultrasonic transducers 
need to be explored.
    Other physical effects of sound such as the vibration based 
frictional driving, Chladni effect, acoustic cavitation, Bjerknes 
forces, and sound induced intermolecular force decrease also have 
applications in acoustic micro/nano manipulations. In the vibration 
based frictional driving technique, the elliptical motion of solid 
surface with a travelling wave is employed to drive micro objects 
on the surface of a substrate. Methods of generating the travelling 
wave may be found in Refs[22-24].  The vibration based frictional 
driving of micro objects may be used in particle transportation and 
separation[45,46], rotary driving of micro mechanical components[23-24], 
etc. In the Chladni effect, the impact between a vibration surface 
and particulate matters on the vibration surface is used to drive the 
particulate matters to the vibration nodes of the vibration surface. 
The Chladni effect provides a positioning force in the travelling wave 
based rotary driving around vibration nodes of a plate in the flexural 
twisting vibration mode[2,23-24]. The acoustic cavitation is a well known 
physical effect of ultrasound, in which micro bubbles are generated 
in a sound field in liquid[25-26]. Its recent applications include the pore 
size increase of cells and the dispersion of micro/nano particulate 
matters in solution[47]. The Bjerknes forces are a special acoustic 

radiation force acting on vibrating bubbles in liquid[27-29]. This force 
is useful in the concentration of micro particles in liquid. Acoustic 
vibration in liquid can cause the decrease of intermolecular cohesive 
force such as Van Der Walls force and Hydrogen bonding among 
liquid molecules[2,30-32,34], no matter whether the acoustic cavitation 
has occurred or not. This effect has been employed in the driving of 
micro fluid[30-33], merging of micro droplets[34], etc. Compared with 
the acoustic radiation force and acoustic streaming, physical effects 
such as the vibration based frictional driving, Chladni effect, acoustic 
cavitation, Bjerknes forces, and sound induced intermolecular force 
decrease still haven’t been explored sufficiently. They are worthy of 
being investigated thoroughly in basic principle, device design theory 
and applications, due to their potentials in micro/nano manipulations. 
    Acoustic micro/nano manipulation technology is an emerging 
academic field, generated by the merging of Acoustics and actuation 
technology, to meet the diversified requirements of handling micro/
nano scale objects. Although it has very large potential applications in 
the fields such as biomedicine, micro/nano fabrication, nanoscience, 
material engineering, renewable energy, etc., researches on the 
principle, structure design, and application of the devices are still 
superficial and insufficient. Constructive experiments and in-depth 
theoretical analyses, which are key to achieve the breakthroughs, are 
needed and will definitely push acoustic micro/nano manipulation 
technology forward.       
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