Hyperpolarization vs. Gadolinium Retention in the Brain: Topic Highlight

Abdulwahab Alahmari

1 Abdulwahab Alahmari, Radiology Specialist, Radiology Department, King Khalid University, Abha, Kingdom of Saudi Arabia.

Conflict-of-interest statement: The author(s) declare(s) that there is no conflict of interest regarding the publication of this paper.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Correspondence to: Abdulwahab Alahmari, Radiology Specialist, Radiology Department, King Khalid University, Abha, Kingdom of Saudi Arabia.
Email: afaa99@hotmail.co.uk
Telephone: +966562428716

Received: October 6, 2019
Revised: November 22, 2019
Accepted: November 27, 2019
Published online: December 22, 2019

ABSTRACT

Recent findings and reports came to the conclusion that gadolinium retained in the brain and in the human body in general after undertaken an MRI scan with contrast. Many governmental institutions claim that gadolinium is retained in the brain, but has no effect on human health. This paper will show both sides of the conversation regarding gadolinium retention in the brain and gadolinium replacement like hyperpolarization as a promising technique instead of using the gadolinium.

Key words: MRI; Gadolinium; Hyperpolarization; 13 carbon; Pyruvate

© 2019 The Author(s). Published by ACT Publishing Group Ltd. All rights reserved.
Hyperpolarization is a challenging issue as well\(^5\). Hyperpolarization required dedicated coils because it used with non-proton nuclei like 15 nitrogen and 13 carbon\(^5\). Another issue is, every molecule (that will be hyperboliz) has its own relaxation and polarization properties\(^5\).

CONCLUSION

Hyperpolarization is a promising technique and it faces many challenges, but it is still a better replacement for gadolinium. Gadolinium maybe with time will not be in use anymore. There is an urgency in finding another safe replacement which is required by medical professionals and patients as well.

REFERENCES