
MR image is SNR because it is slightly tissue-depended. From the 
hybrid metrics, the most used is SSIM. 
CONCLUSION: This paper summarized the objective and hybrids 
metrics that are Human Vision System - based characteristics. Also, 
it discusses on the notion of image quality assessment. The problems 
faced by various metrics are highlighted and the advantage of utilized 
a certain metric or a tandem of certain metrics are emphasized.
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INTRODUCTION
Magnetic Resonance Imaging (MRI) gives sound and detailed 
information about internal tissue structures and has a major influence 
in brain image analysis and diagnosis field. Three types of MR brain 
images, T1-weighted (T1w), T2-weighted (T2w) and proton-density 
weighted (PDw) that handles with different contrast characteristics of 
the brain tissues exist. 
    In the MR image acquisition terms, the data consist of both 
discrete Fourier samples, usually referred to as k-space samples and 
magnitude MR imaging, when the image phase is disregarded and 
only the magnitude is of interest. The magnitude images encompass 
the real and imaginary components of the “clean” data as well as the 
real and imaginary components of the noise with a certain variance. 
The noisy pixels in the magnitude image obey the Rician distribution 
and this Rician noise is signal-dependent[1]. The de-noising algorithms 
designed for additive white Gaussian noise reduction do not give good 
results on Rician image data[2].
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ABSTRACT
AIM: We carry out a study on image quality methods, organize them 
in a logical approach, provide the mathematical framework, and 
finally discuss their performance. Objective image quality measures 
are frequently used in image processing. This review is not dedicated 
to subjective tests as they are very difficult and time consuming 
processes. 
MATERIALS AND METHODS: The quality studies are performed 
during the pre-processing step through the assessment of the de-
noising efficacy, during the processing step as segmentation operation 
and as methods that evaluated its performance or in pattern-
recognition. Extensive studies have taken hybrid metrics into account 
such as structural similarity index (SSIM), mean SSIM, feature 
similarity, the quality index based on local variance, and objective 
metrics such as signal-to-noise ratio, peak signal-to-noise ratio, mean 
square error, mean absolute error, contrast to noise ratio, root mean 
square error, Bhattacharyya coefficient or mutual information. 
RESULTS: These methods are compared in the context of brain MR 
images based on the reported performances. The most frequently 
used objective metric in the evaluation of the quality of processed 
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    Typically, MR images suffer from various artefacts as image 
inhomogeneity, noise (usually, Rician type), patient motion or extra 
cranial tissues that reduce the overall accuracy. All of these can lead to 
misinterpretation of brain MR data or even can hinder the practicians’ 
access to the useful information. Brain disorder diagnosis and brain 
disorders classification by using MR images are specific medical 
image analysis methodologies that require a superior image quality. It 
is equally important to predict and to enhance the quality of the image. 
For these reasons, image quality assessment (IQA) is a challenging 
task for digital image processing. IQA can be done subjectively, 
objectively or in a hybrid approach (namely, based on the similarity 
with the Human Visual System (HVS) characteristics and coupled 
with objective measures) (Figure 1).
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segmentation and post-processing. It can be used as benchmark tool 
to provide information about the best algorithm or as an optimization 
tool in de-noising and image restoration. 
    In this paper, an extensive comparative analysis is performed to 
illustrate the merits and demerits of various objective and hybrid 
image quality assessment techniques.

OBJECTIVE METRICS
1 Signal-to-noise ratio (SNR) 
The SNR is a typical metric used to compare imaging hardware, 
acquisition or de-noising methods. It is slightly tissue-depended. 
Generally, the application of SNR is to compare the static images, 
such as images from two different coils or pulse sequences. This 
metric is equal to the ratio of the average signal intensity over the 
standard deviation of the noise, given in decibel (dB)[3]:

                                                                           (1)
 
where f(i,j) is the original image and g(i,j) is the image corrupted by 
noise with M×N size.
    An experiment focused on the functional MRI demonstrates 
that the SNR increases with the magnetic field strength. Thus, 
an increase of 10% or 13% for SNR has been reported when the 
magnetic field increased from 1.5 T to 3.0 T[3,4]. The main motivation 
to acquire MR images at higher field strengths is the possibility to 
have higher SNR values. In the high-magnetic field imaging, the 
dependence of the signal on field strength is not dominant. Another 
parameter that influences the SNR value is the MR image type. 
Voss et al[3] demonstrated that the relaxation time T1 increases and 
T2 remains almost constant when the field strength increases. In 
an early study, Parrish et al[5] analyzed the SNR variation in order 
to find the minimum optimal value able to allow the detection of 
the smaller fluctuations in the fMRI signals. The BOLD technique 
(Blood Oxygenation Level Dependent) that exploits the relationship 
hemodynamic variations - neuronal activity was used in order to detect 
the signal changes induced by brain activations. The requirement of 
this method was the SNR should be high enough to detect fMRI signal 
changes greater than 1%. This technique fails to detect signal changes 
of 1% or smaller near the lesion but highlights the clinical importance 
of SNR in fMRI experiment.
    The SNR can be improved without sacrificing the spatial resolution 
using a new signal-preserving technique for noise suppression based 
on spectral subtraction method (SSD) proposed in[6]. The SSD method 
has been used in MR images, commonly degraded by additive 
Gaussian noise that shows a constant power spectrum. The noise 
was added to both real and imaginary parts of the 2D FT (in Fourier-
domain computation). The noise power spectrum has been computed 
using the variance of the intensity values into the areas belonging to 
the background part of the image. Then, it has been subtracted from 
the original power spectrum in the Fourier domain in order to obtain 
the de-noised power spectrum. The SSD method could be used for 
images with artefacts induced by physiological noise and motion. This 
study reported a SNR improvement up to 45% for phantoms MRI, but 
it is comparable to the results provided by the anisotropic diffusion 
filtering method for real MRI. 
    Another sensitive method able to measure the microscopic motion 
of water molecules within tissue is the Diffusion Weighted Imaging 
(DWI). Even if, the diffusion weighted images are characterized by 
a low SNR, they contain a lot of biased data. Manjón et al[7] used 
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Figure 1 Image quality assessment.

    The following abbreviations are used: SSIM- structural similarity 
index; MSSIM - mean SSIM; FSIM - Feature  Similarity; QILV - the 
quality index based on local variance; SNR - signal-to-noise ratio; 
PSNR - peak signal-to-noise ratio; MSE - mean square error; MAE 
- mean absolute error; CNR - contrast to noise ratio; RMSE - root 
mean square error; BC - Bhattacharyya coefficient; and MI - mutual 
information. 
    All these evaluation techniques have their pros and cons. Many 
reports claim that the subjective evaluation is the best solution for 
IQA, but its main drawbacks consist of less speed, it is very expensive 
for current application and should be completed with objective 
methods for a reliable diagnostic. On the other hand, the objective 
image quality metrics show many advantages. They are fast and 
reproducible but require expensive software. Also, the objective IQA 
requires for a reference (ideal) image that is assumed to be ‘the perfect 
image’ from the quality point of view. The hybrid methods are based 
on the similarity with the human visual system HVS characteristics. 
They encompass some HVS features like: the sensitivity to lower 
spatial frequency, the sensitive to luminance contrast rather than 
the absolute luminance value and contrast masking that leads to a 
decrease in detectability of an image component vs. another. However, 
even these methods should be complemented with objective methods 
for a sound quality assessment. 
    Clinical acceptance of objective image quality assessment depends 
on its ability to predict the quality of brain MR image in a very similar 
way as the visual inspection as subjective assessment does. 
    IQA can be used in all stages of the processing pipeline of the 
brain MR images, namely during pre-processing, feature analysis, 
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is useful only to compare the restoration results for the same image. In 
the case of between-image comparisons, PSNR is meaningless. In[14], 
the authors shown that the PSNR has to be used only for comparative 
quality assessment with fixed content.
    In the scientific literature, PSNR focuses on the evaluation of the 
various de-noising methods that use various filters[13,15,16], wavelets[17,18] 
or are hybrid methods that corroborate filters with wavelets[19-21].  
    Two main strategies were developed for de-noising the magnitude 
of MR images. In the first approach, the Rician data are directly 
treated in the image domain. In the second, in order to avoid the 
difficulties raised from Rician noise, the de-noising operation works 
in the squared magnitude space. Here the signal spectrum is spreading 
and the bias associated with the Rician noise is better removed. 
    Mohan et al[13] proposed a new filter based on nonlocal neutrosophic 
set approach of Wiener filtering. Nonlocal means filter effectively 
reduces the noise while minimally affects the original structures of the 
image. A w-Wiener filtering is employed and the entropy measures 
the indetermination degree of the image. A neutrosophic set image 
is characterized by a pixel that is transformed into the neutrosophic 
set domain namely, there are three probabilities: this pixel belongs 
to white pixels set, indeterminate set and non white pixels set, 
respectively. The reported performance of the de-noising nonlocal 
neutrosophic set vs. different de-noising methods (the PSNR values 
are put between brackets) is as follows: anisotropic diffusion filter (25.3 
dB), Wiener filter (24.4 dB), total variation minimization scheme (24.5 
dB) and nonlocal neutrosophic set (31.35 dB). 
    Tasdizen[15] reported an in-depth analysis of a variation of the non-
local means (NLM) image de-noising method based on principal 
component analysis. Here, a set of eight images were used, including 
the brain MR images. The images were corrupted with additive 
Gaussian noise with standard deviation of 10, 25 and 50. Then, the 
images were improved using the proposed principal neighborhood 
dictionary (PND) method in the following image neighborhoods: 1×1, 
3×3, 5×5, 7×7, 9×9 with respect to the PCA subspace dimensionality. 
    The use of an optimized NLM de-noising algorithm in conjunction 
with the squared-magnitude image was proposed by Hong et al[16]. 
This approach exploits so-called “Chi-square Unbiased Risk Estimate” 
which is a robust unbiased estimate of the expected mean-square error 
between the (unknown) noise-free squared-magnitude image and a 
processed version of it. Transverse, coronal and sagittal brain MR 
images are used to perform the optimization of proposed algorithm. 
The better PSNR values fall in the range from 24.01 dB to 35.63 dB. 
Each image was corrupted with various levels of Rician noise (5, 10, 
20, 30 and 50). 
    In the wavelets application domain, many papers that focused on 
noise removal in clinical images or other physiological signals were 
published. Even if the wavelet transform are extensively used in 
filtering operations, they show some drawbacks such as oscillations, 
shift variance or aliasing. Raj and Venkateswarlu[17] proposed a de-
noising approach of MR images using the dual tree complex wavelet 
transform for feature extraction and object recognition. A global 
threshold approach was used to remove the small absolute value 
coefficients that encode the noisy pixels and very fine details of the 
signal. The noise level has been established using the median absolute 
deviation and the de-noising efficiency has been evaluated based on 
PSNR. Although there are higher values of PSNR the quality of the 
images is not always very good. The artefacts as edge blur or ringing 
effect are removed by using discrete wavelet transform.  Satheesh and 
Prasad[18] proposed a de-noising method based on contourlet transform 
(that can capture image edges and contours in an accurate way) in 
order to remove the Gaussian noise. PSNR metric has been used to 

the Principal Component Analysis (PCA) during the de-noising 
operation. They proposed a local PCA de-noising method over small 
local windows instead of the whole image taking the advantage of 
the sparse representation. The method has been evaluated on both 
synthetic and real clinical images. The main improvements that the 
authors claim are related to the ability of the filter to remove not only 
the noise in multi-directional DWI data by using a local PCA-based 
decomposition but also the bias induced by the Rician noise; the 
resulted parameters better reflect the characteristics of the tissue. 
    A wavelet multiscale de-noising algorithm based on the Radon 
transform for MR images has been proposed by Yang and Fei[8]. The 
Rician nature of noise in MR images was taken into account. The main 
challenge of the Rician noise consists of its asymmetric probability 
density function for low signal intensities. The proposed method 
addressed to the darker region into MR images such as skull, nasal 
sinuses and cerebrospinal fluid, because these regions have the lower 
SNR. The authors have applied a Radon transform combined with a 
wavelet transform to the original images and have found that the sum 
of several Rician distributed noises has a symmetric distribution so the 
noise distribution has been identified with a Gaussian distribution. The 
authors stated that it is an effective de-noising method that allows the 
preservation of the important image details and features.
    Another application of wavelet transform has been proposed by 
Scharcanski et al[9]. The main goal was the de-noising of the MR 
images with edge preservation based on scale and space consistency. 
The method combines the wavelet coring and the scale consistency 
by using a shrinkage function and space consistency through the 
geometric constrains (contour continuity and orientation continuity 
along consecutive levels). This method has been applied on the noisy 
images (SNR=8 dB and 3 dB). In the case of 3 dB noise, the de-
noising operation with the proposed method achieves a SNR of 15 dB. 
The edges were preserved but some subtle details were lost. However, 
both visual and objective comparisons favor the proposed method. 
Various authors, e.g.[10-12] have also used wavelet analysis in de-noising 
operation to increase the image quality. In[12] a new approach for de-
noising MR images with Rician noise using low complexity joint 
detection and estimation has been proposed. The authors introduce 
an analytical model for the probability of signal presence adapted to 
the global histogram coefficients and to a local indicator of spatial 
activity (assumed to be a locally averaged magnitude of the wavelet 
coefficients). A 3 × 3 window size was found to provide the best SNR 
values, for various K tunable parameters that control the notion of the 
signal of interest. It has been shown that the increase of K leads to a 
stronger suppression of the background texture and to an enhancement 
of sharp intensity variations. 
    Generally, a tradeoff between noise reduction and the preservation 
of key image features should exist with the final goal to enhance the 
diagnostically relevant image content. 

2. Peak signal-to-noise ratio (PSNR)
The PSNR is a quality measure between the original and a distorted 
image. The peak signal to noise ratio, is computed as:

                                                                                    (2)

where f(i,j) is the original image and g(i,j) is the image corrupted 
by noise. The images have M×N size[13]. Generally, a higher PSNR 
denotes a better de-noising method and indicates a higher quality 
image. Some tests show that this statement is not always true. PSNR 



compare the performance of the method vs. the soft threshold and 
Wiener filter in the wavelet domain. According to their results, when 
the noise variance increases from 20 to 60, the PSNR decreases from 
25 dB to 13 dB, and the proposed method outperforms the Wiener and 
wavelet filters. 
    Wiest-Daessle et al[19] proposed an improved version of the NLM 
filter to de-noise MR images affected by Rician noise. The quality 
of image restoration was evaluated by PSNR. They found that the 
PSNR values decrease when the Rician noise level increases. Also, 
the paper[20] focused on the improvement of the image quality by de-
noising and resolution enhancement. The average, median and Wiener 
filters for image de-noising and discrete wavelet transform (DWT) 
and dual tree complex wavelet transform (DT-CWT) techniques 
for resolution enhancement have been used. The performance of 
de-noising was analyzed by PSNR and the following results were 
obtained: average (50.5dB), median (60.36 dB), DWT (57.34 dB), 
DT-CWT (61.9 dB) and Wiener filters (88.01 dB) [20]. Sukhatme and 
Verma[21] used the undecimated discrete wavelet transform (UDWT) 
to de-noise the MR images. Their results indicate that UDWT method 
improves the PSNR values from 21.43 dB to 26.70 dB (for a noise 
variance of 0.01) and MSSIM values from 0.9997 to 0.9998. 

3. Mean square error (MSE)
The MSE is an error metrics that represents the cumulative squared 
error between the distorted and the original image. It is defined as:
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where f(x,y) is the original image, g(i,j) is the degraded image with 
M×N size[13].
    A lower MSE indicates lesser errors. Despite the fact that the 
MSE is very popular, it shows some drawbacks. Thus, it strongly 
depends on the image intensity scaling and the squared difference 
diminishes the small differences between the two pixels but penalizes 
the large ones. Also, it exhibits weak performance when assessing the 
perceptually signals such as speech and vision. Two distorted images 
can have the same MSE but may encompass different types of errors 
so, they may differ visibly. 
    In the literature, there are many papers that report various algorithms 
that have most often been compared using the MSE. Dua and Raj[22] 
proposed a wave atom shrinkage method as a de-noising tool of 
brain MR images degraded by Rician noise. Wave atom is a variant 
of 2D wavelet packets having better directional and decomposition 
capabilities. Using a new variant for threshold computation, this 
method assesses the efficacy of de-noising using a set of four 
parameters. In terms of MSE values, lower values are reported for 
the proposed method. Looking at another area of application, van 
der Kouwe et al[23] developed a method for ‘on-line automatic slice 
positioning for brain MR imaging’, in T1w environment, that used 
MSE as an evaluation tool of the automatic slice positioning. The 
performance of positioning in terms of individual translations and 
rotations has been analyzed using the maximum or minimum value 
of MSE between automatic alignment localizers and atlas of aligned 
brain images (as a standard). 
    Even if the MSE doesn’t have good results during the quality 
assessment of the individual, it can be useful in the evaluation of 
the some anatomical structures that are present in all individuals, in 
an average manner. Hellier et al[24] used MSE as a global measure 
for evaluating average brain’s volumes (in voxels) resulted from 
segmentation operations or for the overlap of the grey and white 
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matter tissues as a measure of the deformation of the tissues during 
the image registration. It must be noted that the MSE is always 
complemented by other metric such as mutual information or 
correlation. 

4.  Root mean square error (RMSE)
Root mean square error is MSE-based on defined and it assesses the 
pixel difference between the original and the processed image:

MSERMSE =   (4)
    It amplifies and severely punishes large errors. Its values should be 
low for an efficient filtering operation as it examines the quantity of 
the removed noise. RMSE is a distance measure commonly used to 
measure the different filter performances[7]. Manjón et al[7] provided 
a de-noising analysis based on the following filters: nonlocal means, 
oracle-based 3D discrete cosine transform, wavelet sub-band mixing, 
rotationally invariant nonlocal means and compared their results with 
related state-of-the-art methods using RMSE and SSIM measures. The 
noise level varied from 0 to 15. Rizvi et al[25], performed a de-noising 
and segmentation study based on morphological filters and watershed 
method, respectively. The de-noising efficacy was analyzed using 
MSE and RMSE. The authors in[20,26] used their proposed methods and 
exploited the quality of image processing using RMSE metric, in the 
Rician noise assumption in brain MR images.

5. Mean absolute error (MAE) 
In order to measure the distortions in an image and to compare the 
performance of certain processing operation, the mean absolute error 
that reflects the image fidelity could be considered[13]:
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    Usually, MAE provides better results than the MSE and estimates 
either the image fidelity closer to a human viewer or the closeness 
of the images to each other. It belongs to pixel difference-based 
measures.
    The MAE is a hallmark that can appraise the performance of 
various de-noising methods based on filters[27], wavelets[17,22] and 
kernel via PCA[15,28]. In the post-processing phase, MAE is used to 
evaluate the accuracy of segmentation and as an improvement tool of 
quantitative precision of segmentation[29]. Another application deals 
with the early identification of brain atrophy or anatomy deviating 
from the normal pattern based on automatically estimation of the age 
of healthy subjects from their T1w MRI scans[28]. The accuracy of 
the age estimations has been estimated using MAE and the authors 
found MAE to be the most meaningful measure for assessing the 
influence of different parameters (such as affine registration, the size 
of smoothing kernel and the values of spatial resolution).

6. Contrast to noise ratio (CNR) 
CNR supports many different definitions depending how the signal of 
interest is identified. One way to define CNR deals with the difference 
between the mean values of the signals in two images or with the 
signal amplitude relative to the existing noise in an image. Also, CNR 
provides a measure of how much the SNR differs between different 
tissue types. It can be defined as[30]:
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where μ and s w are the mean and standard deviation, respectively, of 
the analyzed images of regions of interest. Its main goal is to obtain 
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an image having the higher CNR between pathological and normal 
tissues than in any of the initial images. The most used hypothesis 
when the CNR is analyzed, is those that the original and target 
images have the same noise weights. However, CNR depends on 
the pixels’ location in the image so it could be not exactly identical 
among different calculations. The shortcomings of the contrast 
assessment come from the fact that if the contrast of an image is 
highly concentrated on a specific range, the information contained in 
the adjacent areas may be lost. Also, the edges presence into images 
could induce artifacts. CNR is most applicable when the mean grey 
scale of the signal is representative for the entire image. Usually, SNR 
and CNR are both used in evaluating the acquisition process of MRI; 
they are strongly influenced by the magnetic field strength.
    In this context, the brain MR images that are strongly 
inhomogeneous will affect the CNR accuracy and the solution is to 
compute CNR in regions of interest. Usually, the following regions of 
interest are subject to analysis: grey matter, white matter, cerebrospinal 
fluid, air or background or various cerebral lesions[31-33]. Also, the 
contrast of brain MR images is strongly influenced by the T1 and 
T2 relaxation times of the specific tissues and by the magnetic field 
strength, temperature, scan parameters or the local and surrounding 
blood vessel distribution[3,34]. Magnotta et al[35] demonstrated that 
SNR and CNR increase at higher field strengths and they have large 
variation that represents a potential source of biased data. 

7. Bhattacharyya coefficient (BC)
BC coefficient measures the similarity between the original image 
(target image) and modified image (query image). The Bhattacharyya 
distance is calculated between the histogram of the original image 
and the histogram of modified image. BC has associated a value of 1 
between two images that have the same normalized histograms and 0 
when they are completely dissimilar[30]. 

                                                        (7)     
 
where N denote the number of bins in the histogram (with the 
corresponding probabilities), l are the N-bins blocks of the original 
image and r are the N-bins blocks of the modified image. We can 
state that Bhattacharya coefficient belongs to the spectral methods. 
The main applicability of BC is in the field of color histograms to 
correlate images and this method produces biased results when it is 
applied to gray scale images. However, in the last years, BC has found 
application in measuring the dissimilarity of textures.
    A wide number of works have included BC metric for medical 
image processing, analyze and quality evaluation. In the next 
paragraph some works based on the BC approach are shortly 
presented. 
    Udayakumar and Khanaa[36] proposed a method for an automatic 
diagnosis of dementia in T1w MR images based on Histogram 
Oriented Gradient as a feature extraction technique. Bhattacharyya 
distance and the Summed Euclidean distance were used for similarity 
measure between the query and target images.
    Many semi-automatic, automatic or full automatic methods were 
implemented for detection of edemas and/or brain tumors. Generally, 
the BC has been coupled with PSNR, MSE or Pearson’s correlation 
coefficient in order to detect various abnormalities caused by tumors 
and to localize them in the left or right hemispheres[37-39]. A semi-
automatic method to segment the MS lesions was performed in[40]. The 
authors used a multiscale classification using a variational Dirichlet 
process and an active contours model based on statistical knowledge. 
In order to discriminate MS lesion, the BC has been used. In another 

work[41], BC measures similarity between two normalized gray level 
intensity histograms in order to automatically mark a tumor position 
and separate it from a healthy texture in brain MR images. 
    The detection of significant morphological differences of brain 
anatomy induced by brain atrophy in Alzheimer's disease has been 
performed by using the deformation-based morphometry method[42]. 
Some scalar measures of local deformations were followed by a 
supervised feature selection process that allows the feature data 
extraction for classification purpose. Feature selection was performed 
using the Pearson's correlation for voxel significance, Bhattacharyya 
distance that describes the class separability ability and the Welch's 
t-test statistic between two populations having unequal variances.

8. Mutual information (MI)
Mutual Information (MI) or relative entropy measures the degree 
of dependence of two discrete variables f and g that have the joint 
probability distribution of pfg(a,b) and the marginal distributions 
of pf(a) and pg(b). If the probability distributions are statistically 
independent, then pfg(a,b)=pf(a)•pg(b). The degree of dependence is 
estimated by using the Kullback-Leibler measure[43]:
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    Another interpretation of MI says that it is a measure of the amount 
of information one random variable contains about another. Namely, 
the regions of similar tissue (and similar gray tones) in one image 
would correspond to regions in the other image that also consist of 
similar gray values (but not the same as in the first image).
    The primary application of the MI in medical image processing 
consists of the alignment or registration of multimodality images. 
Maes et al[43] used the MI to measure the statistical dependence 
or information redundancy between the image intensities of 
corresponding voxels in both images, with the final goal to completely 
automatic registration of multimodality medical images. They state 
that the MI of the image intensity values is maximal when the images 
are geometrically aligned. The same issue of registration is the subject 
of the paper[44]. The affine registration of brain images using inter-
modal voxel similarity measures such as Correlation Ratio and Mutual 
Information is viewed as a global optimization method. Another 
practical application is to analyze serial structural MRI of the brain 
in the study of the neurodegenerative conditions when the localized 
changes in tissue intensity between time points exist[45]. The intensity 
or contrast effects, in serial MRI studies, may affect the accuracy 
of the registration. Studholme et al[45] focused on the regionally 
localizing mutual information and derived a single global criterion 
which is adapted to local tissue contrast. Their method allows an 
automated, sensitive and quantitative mapping of local tissue volume 
changes in the study of neuro-degeneration and development. The 
same maximization of mutual information approach was used in[46] 
for multimodal image registration. It modeled an image as a viscous 
fluid that deforms under the influence of forces derived from the 
gradient of the mutual information registration criterion. The method 
was validated on simulated T1w/T1w, T1w/T2w and T1w/PDw brain 
MR images with similar dimensions and voxel sizes. Better results 
were obtained when the T1w images were used as template images 
because the forces driving the registration depend on the gradient of 
the template image and T1w shows the higher gradient at the interface 
between GM and WM. The joint histogram of the two MR images 
was used to develop an approach dedicated to develop an artifact-
free or nearly artifact-free MI-based registration algorithm to improve 
registration accuracy[47]. The joint histogram of an image pair was 
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noise distribution were transformed into Gaussian distribution using 
variance stabilization method. After that, a patch-based algorithm 
allows for de-noising the images. SSIM performs the image quality 
assessment using the same parameters by default. Aja-Fernandez et 
al[58] performed an assessment of the image quality by comparing 
the local variance distribution of two images. Some distortions as 
blur and noise are inserted into images and then, the image quality 
has been estimated using the local variance distribution because 
it encompasses a great amount of the structural information. 
The authors showed that the weakness of SSIM consist of that it 
calculates the local variances of both images, but the index provides 
information only on the mean of those values. A new variant of this 
index has been proposed, namely the Quality Index based on Local 
Variance (QILV), and it encompasses the local statistics of the images 
based on the local variance of an image. The authors claimed that 
the performances of this new index correspond more closely to those 
expected from subjective visual assessment (concerning structural 
information). However, there exists a drawback of their method. The 
size of the neighborhood used to weight the local variance should be 
defined according to the particular application.

2. Mean structural similarity index metrics (MSSIM)
Various approaches have been explored in developing algorithms for 
structural similarity measurements. Mean structural similarity index 
metrics is an extension of SSIM. If a k × k window moves across an 
image, a local SSIM score is calculated. If the entire image is taken 
into account, a simple arithmetic average of each of the local scores is 
referred as the mean SSIM[59].
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    Wang et al[59] demonstrated that images having the same MSE 
may show strong different image quality. It seems that MSE is highly 
sensitive to changes in luminance and contrast while SSIM is highly 
sensitive to noise. The proposed MSSIM adapt better to perceptual 
evaluation, namely for images that have almost the same MSE but 
have different quality. However, both SSIM and MSSIM may fail 
in the evaluation of noisy, blurred or compressed images when the 
completely different images are indicated as similar. MSSIM is 
an attempt to balance the characteristic of the structural index that 
measures the variations in luminance and contrast separately, so that 
the overall MSSIM index should be not affected by such changes. 
    Based on this property, various de-noising methods were 
proposed and MSSIM index has been used to compare the 
performance[21,26,60-62]. Also, the quality of compressed images 
used during the transmission stage or for storage purposes was 
investigated based on the MSSIM index[63]. Pursuing a multi 
resolution decompositions approach, Beladgham et al[63] investigated 
the MRI image compression based on a Cohen-Daubechies-Feauveau 
symmetric biorthogonal wavelet transform CDF 9/7 coupled with set 
partitioning in hierarchical trees (SPIHT) coding algorithm that allow 
to increase the image quality. The wavelet has a low pass associated 
filter that is characterized by 9 analysis coefficients and 7 synthesis 
coefficients. They have compared the results of compression obtained 
with wavelet based filters bank through PSNR and MSSIM indexes. 
The bit-rate or number of bits per pixel varied from 0.125 to 2 and, 
accordingly, the PSNR increases from 24.50 dB to 43.88 dB and 
MSSIM increases from 0.68 to 0.98. The performance of the method 
has been compared with different types of wavelet transforms such 
as wavelet Le Gall (lifting scheme) transform, CDF9/7 (lifting 
scheme) coupled with the SPIHT coding or CDF9/7 (Lifting scheme) 
combined with the embedded zerotree wavelet algorithm.

defined as a function of two variables, the gray-level intensity in the 
first image and, the gray-level intensity in the second image. The joint 
histogram counts how many times each gray-level correspondence 
occurs. If the images are correctly registered, the joint histogram 
shows certain clusters for gray-levels of matching structures.

METHODS HYBRID METRICS BASED ON 
HVS CHARACTERISTICS
1. Structural similarity index (SSIM)
The structural similarity index (SSIM) measures the structural 
similarity of a processed image against a reference image or the 
preservation degree of the relevant structures. SSIM has found many 
applications from image classification[48-51], restoration and fusion[52], 
to watermarking, de-noising and biometrics[53].
Δ1, Δ2) in the set of coordinates, Δ2, its local neighbourhood of ra-
dius r is defined as Δ2, Δ-Δ1≤Δ}. For two spatial locations x and , 
the SSIM is defined as:
Δ, Δ=2ΔΔ+Δ1Δ2+Δ2+Δ1+2ΔΔΔΔ+Δ2ΔΔ2+ΔΔ2+Δ2ΔΔΔ,Δ+3ΔΔΔ
Δ+Δ3Δ=Δ(Δ,Δ)ΔΔ(Δ,Δ)ΔΔ)(Δ,Δ)Δ         (9)
Δ and Δ denote the mean valuse, ΔΔ and ΔΔ are the standard devia-
tion and ΔΔΔ is the Δ1, Δ2 and Δ3 are small positive constants. The 
luminance and contrast terms describe the non-structural distortions, 
and the last term (structural distortion) characterizes the loss of linear 
correlation. SSIM satisfies the following conditions:
1. symmetry: SSIM (x; y) = SSIM (y; x)
2. boundedness: SSIM (x; y) ≤1

3. unique maximum: SSIM (x; y) =1  if and only if  x = y.
    Chincarini et al[54] used in their paper a local application of this 
metric when noise filtering procedure has been develop for 3D 
images. They looked for the appropriate three thresholds of the 
principal slices (axial, sagittal, coronal) passing through the image 
center of mass. The local image patches taken from the same location 
of two images g and f provide three elements used to compute the 
structural similarity index: the local patch luminance, the local patch 
contrast, and the local patch structure. The final metric is given by the 
average of the local metrics computed for the principal slices
    Manjón et al[7] proposed two methods for de-noising 3D MR 
images that used the sparseness and self-similarity properties of 
the images. They adopted the discrete cosine transform DCT that 
uses the sparseness of the image (i.e., the ability of the image to 
be represented by a small number of base functions) and a NLM 
filter approach that uses the pattern redundancy. In the case of DCT 
filtering method, the parameter was a  is the standard deviation of the 
Rician noise). For the second approach, parameter. The SSIM has 
been estimated using the following constants, c1=(k1L)2 and c2=(k2L)2 
(where L is the dynamic range, k1=0.01 and k2=0.03 ) and a Gaussian 
kernel of 3×3×3 voxels. The results were evaluated in a comparative 
way for different image types and noise levels, using SSIM and 
RMSE in T1w and PDw. 
    Various methods for noise filtering in MR images that follow a 
Rician model were adopted. In[55], a variant of the linear minimum 
mean square error estimator for noise with Rician distribution has 
been proposed. Both the parameters of Rician distribution (using a 
single magnitude image and multiple images) and the signal were 
estimated. By using the SSIM, the authors proved that the proposed 
de-noising method allowed for good edge and structural information 
preservation. The quality measures for synthetic experiment 
were compared with the results provided by maximum likelihood 
approach, expectation maximization formulations, Koay method[56] 
and Wiener and wavelet based filters. In[57], the Poisson and Rician 
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3. Quality index based on local variance (QILV)
In the brain MRI analysis, the spatial context incorporates the 
useful information for brain MRI understanding tasks. Each 
intensity pixel is highly statistically dependent on the intensities 
of its neighbors. 
    The universal QILV is a variant of statistical similarity metric. It 
is a complementary method based on the computation of the local 
variance distribution between two images. The modification made 
to the similarity index to improve the performance was based on the 
idea that a great amount of the structural information is hidden in the 
distribution of its local variance[13,64]. The QILV between two images 
f and g has been defined as:
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where μf, μg, sf, sg and sfg are the similar values like those of SSIM 
index[64]. The first term compares the mean of the local variance 
distributions of both images. The second one compares the standard 
deviation of the local variances and the last term introduces the 
spatial coherence. Generally, QILV accounts for structures/edges 
preservation.
    The local variance of an image f is defined to be the sample 
variance of the collection of pixels centered at the considered pixel. It 
is defined into local neighborhood and it is weighted. The size of the 
neighborhood should be related to the scale of the image structures. 
This can be seen as constrain. However, Aja-Fernandez et al[58] 
pointed out that the proposed QILV index enhances the structural 
content at the expense of removing background information. This 
is a drawback in the case of MR images, because distinctive local 
contexts are important and should be preserved from the visual 
quality point of view.  
    The QILV is classified as a non-ROI-based measure by Sinha 
and Ramakrishnan[65] because the entire image is analyzed when 
the quality is determined. Tristán-Vega et al[66] used the popular 
NLM filter to reduce the noise in the MR images. Their method 
is an improved approach based on the difference between salient 
features associated to the pixels to be weighted. Prior to de-noising 
with NLM, the distance between patches was efficiently estimated 
by using a small subset of features and providing a fixed value to the 
parameter h (that is related to the noise power of the image). Also, 
they weighted average of all similar patches for a candidate patch. 
QILV has been used to estimate the performance of the proposed 
method. This quality index estimates the blurring degree of the 
structural information but a set of quality indexes has been used. 
QILV was correlated to the RMSE and SSIM values in order to 
estimate the real quality of brain MR images as filter outputs.

4. Feature Similarity Index (FSIM)
Based on the fact that HVS is very sensitive to the low-level features 
of an image such as edges or zero-crossing, Zhang et al[67] proposed 
a new quality index called feature similarity index. FSIM is a full-
referenced metric and it is defined as follows:

                                                                          (12)

where Ω defines the entire image spatial domain. The similarity 
measure SL(x) combines the similarity measures of phase congruency 
(PC) and of gradient magnitude (GM):
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where e1 and e2 ensure the stability of defined functions. When two 
images are compared in terms of feature similarity, the maximum 
value of phase congruency PCm is considered. For all the distortion 
types involved in their study, FSIM outperformed the other quality 
indexes as SSIM, MS-SSIM or PSNR.
    Phophalia et al[26] explored the patch based de-noising method 
through the rough set theory. This method works with the notion 
of granules that defined sets of neighboring pixels. In this way, an 
image is divided in distinct and separate small granules that allow for 
gathering detailed information and to build various classes that will 
be used in further analysis. Their approach considers the adjacent 
boundary information between objects in order to determine similar 
patches. FSIM was one of the comparative metrics used to assess the 
efficacy of de-noising.
    Based on the finding that FSIM failed to consider various visual 
masking effects, Wang et al[68] proposed an improvement of FSIM 
index by considered the CSF (contrast sensitivity function) operator 
and the contrast masking operator in discrete cosine transform 
(DCT) domain. They demonstrated that the improved quality metric 
achieved higher consistency with the human subjective perception 
and it is superior to other relevant state-of-the-art image quality 
assessment metrics.  

DISCUSSIONS
Despite of the multiple advantages offered by MRI technique, it 
shows some pitfalls as the noise presence or the non-standardized 
intensity, namely the MRI pixel intensities have no fixed value on the 
targeted tissue. In related words, pixels depicting the same tissue have 
different intensities in different slices, and false basis are created for 
computational analyses that used pixels intensity values. To overcome 
these drawbacks, various images processing tools and methods had 
been proposed in the past. Also, quantitatively assessment of the 
quality of the brain MR images was and remains a hot topic. Certain 
mathematical tools are essentially in the evaluation of the quality of 
the processed brain MRI. These metrics are classified as objectives, 
hybrid or subjective quality descriptors. 
    According to the information provided in Table 1, the most 
frequently used objective metric in the evaluation of the quality of 
processed MR image is SNR. The reason is that SNR is slightly 
tissue-depended. From the hybrid metrics, the most used is SSIM. If 
the value of SSIM is close to 1 the analyzed images tent to be similar. 

Metric

SNR
PSNR
MSE
RMSE
MAE
CNR
BC
MI
SSIM
MSSIM
QILV
FSIM

Table 1 The searched items according to keywords from PubMed Database.
Number 
of items
1681
65
85
48
33
695
3
246
15
2
1
5

Searched terms

Signal-to-noise ratio brain MRI
Peak signal-to-noise ratio brain MRI
Mean square error brain MRI
Root mean square error brain MRI
Mean absolute error brain MRI
Contrast to noise ratio brain MRI
Bhattacharyya coefficient brain MRI
Mutual information brain MRI
Structural similarity index brain MRI
Mean structural similarity index brain MRI
The quality index based on local variance brain MRI
Feature similarity index brain MRI
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CONCLUSION
The principal objective of this survey was to provide an overview 
of the available brain MRI metrics and on their applicability and 
limitations in the evaluation of the quality of the processed images. 
This paper summarized the objective and hybrids metrics that are 
HVS-based characteristics. Also, it discusses on the notion of IQA. 
The problems faced by various metrics are highlighted in the present 
study. Also, the advantage of utilized a certain metric or a tandem of 
certain metrics are emphasized. 
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